IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas0360544222023593.html
   My bibliography  Save this article

Operation-dependent exergetic sustainability assessment and environmental analysis on a large tanker ship utilizing Organic Rankine cycle system

Author

Listed:
  • Konur, Olgun
  • Yuksel, Onur
  • Aykut Korkmaz, S.
  • Ozgur Colpan, C.
  • Saatcioglu, Omur Y.
  • Koseoglu, Burak

Abstract

This study focuses on the novel perspective of marine ORC systems with a detailed marine diesel generator plant simulation integrated with an ORC system model to evaluate environmental impacts and energy efficiency increments by reducing the number or the load of generators by using the ORC system support during operation. It is aimed to analyze the fuel-saving potential and sustainability performance of the power generation plant of a tanker ship when an ORC is integrated. The thermodynamic system simulation determined the fuel consumption of the plant within two years regarding six operation modes. The results show that the optimum working fluid is R1336mzz (Z) for the evaporation pressure of 16 bar. Organic Rankine cycle system integration provided a total fuel-saving of 15% from diesel generators and the total fuel consumption of the vessel was reduced by 5.16%. The sustainability performance of the system was ensured with a novel operation-dependent approach that enhances the exergetic sustainability assessment by considering the operation modes of the vessel and the time spent on these operations for a certain time. The load reduction in the generators resulted in better sustainability performance and the operation-dependent indicators were affected by operations having more working hours.

Suggested Citation

  • Konur, Olgun & Yuksel, Onur & Aykut Korkmaz, S. & Ozgur Colpan, C. & Saatcioglu, Omur Y. & Koseoglu, Burak, 2023. "Operation-dependent exergetic sustainability assessment and environmental analysis on a large tanker ship utilizing Organic Rankine cycle system," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023593
    DOI: 10.1016/j.energy.2022.125477
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222023593
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125477?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Ailong & Wang, Junteng & He, Yapeng & Perčić, Maja & Vladimir, Nikola & Yang, Liu, 2021. "Decarbonising inland ship power system: Alternative solution and assessment method," Energy, Elsevier, vol. 226(C).
    2. Wang, Enhua & Zhang, Mengru & Meng, Fanxiao & Zhang, Hongguang, 2022. "Zeotropic working fluid selection for an organic Rankine cycle bottoming with a marine engine," Energy, Elsevier, vol. 243(C).
    3. Mat Nawi, Z. & Kamarudin, S.K. & Sheikh Abdullah, S.R. & Lam, S.S., 2019. "The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle," Energy, Elsevier, vol. 166(C), pages 17-31.
    4. Mainali, Brijesh & Silveira, Semida, 2015. "Using a sustainability index to assess energy technologies for rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1351-1365.
    5. Larsen, Ulrik & Wronski, Jorrit & Andreasen, Jesper Graa & Baldi, Francesco & Pierobon, Leonardo, 2017. "Expansion of organic Rankine cycle working fluid in a cylinder of a low-speed two-stroke ship engine," Energy, Elsevier, vol. 119(C), pages 1212-1220.
    6. César O. Peralta P. & Giovani T. T. Vieira & Simon Meunier & Rodrigo J. Vale & Mauricio B. C. Salles & Bruno S. Carmo, 2019. "Evaluation of the CO 2 Emissions Reduction Potential of Li-ion Batteries in Ship Power Systems," Energies, MDPI, vol. 12(3), pages 1-19, January.
    7. Aygun, Hakan & Turan, Onder, 2020. "Exergetic sustainability off-design analysis of variable-cycle aero-engine in various bypass modes," Energy, Elsevier, vol. 195(C).
    8. Nami, Hossein & Anvari-Moghaddam, Amjad, 2020. "Small-scale CCHP systems for waste heat recovery from cement plants: Thermodynamic, sustainability and economic implications," Energy, Elsevier, vol. 192(C).
    9. Balli, Ozgur & Hepbasli, Arif, 2014. "Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine," Energy, Elsevier, vol. 64(C), pages 582-600.
    10. Baldi, Francesco & Gabrielii, Cecilia, 2015. "A feasibility analysis of waste heat recovery systems for marine applications," Energy, Elsevier, vol. 80(C), pages 654-665.
    11. Wu, X.F. & Chen, G.Q. & Wu, X.D. & Yang, Q. & Alsaedi, A. & Hayat, T. & Ahmad, B., 2015. "Renewability and sustainability of biogas system: Cosmic exergy based assessment for a case in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1509-1524.
    12. Marcin Jankowski & Aleksandra Borsukiewicz, 2020. "A Novel Exergy Indicator for Maximizing Energy Utilization in Low-Temperature ORC," Energies, MDPI, vol. 13(7), pages 1-20, April.
    13. Yang, Min-Hsiung & Yeh, Rong-Hua, 2015. "Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine," Applied Energy, Elsevier, vol. 149(C), pages 1-12.
    14. Mondejar, Maria E. & Ahlgren, Fredrik & Thern, Marcus & Genrup, Magnus, 2017. "Quasi-steady state simulation of an organic Rankine cycle for waste heat recovery in a passenger vessel," Applied Energy, Elsevier, vol. 185(P2), pages 1324-1335.
    15. Kallis, George & Roumpedakis, Tryfon C. & Pallis, Platon & Koutantzi, Zoi & Charalampidis, Antonios & Karellas, Sotirios, 2022. "Life cycle analysis of a waste heat recovery for marine engines Organic Rankine Cycle," Energy, Elsevier, vol. 257(C).
    16. S. Levent Kuzu & Levent Bilgili & Alper Kiliç, 2021. "Estimation and dispersion analysis of shipping emissions in Bandirma Port, Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10288-10308, July.
    17. Mirko Grljušić & Vladimir Medica & Nikola Račić, 2014. "Thermodynamic Analysis of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production," Energies, MDPI, vol. 7(11), pages 1-27, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouyang, Tiancheng & Pan, Mingming & Tan, Xianlin & Huang, Youbin & Mo, Chunlan & Wang, Zhiping, 2023. "Advanced power-refrigeration-cycle integrated WHR system for marine natural gas engine base on multi-objective optimization," Energy, Elsevier, vol. 283(C).
    2. Karatuğ, Çağlar & Tadros, Mina & Ventura, Manuel & Soares, C. Guedes, 2024. "Decision support system for ship energy efficiency management based on an optimization model," Energy, Elsevier, vol. 292(C).
    3. Ouyang, Tiancheng & Tan, Xianlin & Tuo, Xiaoyu & Qin, Peijia & Mo, Chunlan, 2024. "Performance analysis and multi-objective optimization of a novel CCHP system integrated energy storage in large seagoing vessel," Renewable Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catapano, F. & Frazzica, A. & Freni, A. & Manzan, M. & Micheli, D. & Palomba, V. & Sementa, P. & Vaglieco, B.M., 2022. "Development and experimental testing of an integrated prototype based on Stirling, ORC and a latent thermal energy storage system for waste heat recovery in naval application," Applied Energy, Elsevier, vol. 311(C).
    2. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Zhu, Sipeng & Ma, Zetai & Zhang, Kun & Deng, Kangyao, 2020. "Energy and exergy analysis of the combined cycle power plant recovering waste heat from the marine two-stroke engine under design and off-design conditions," Energy, Elsevier, vol. 210(C).
    4. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    5. Long Lyu & Wu Chen & Ankang Kan & Yuan Zhang & Song Xue & Jingbin Zeng, 2022. "Investigation of a Dual-Loop ORC for the Waste Heat Recovery of a Marine Main Engine," Energies, MDPI, vol. 15(22), pages 1-22, November.
    6. Aygun, Hakan & Kirmizi, Mehmet & Turan, Onder, 2022. "Propeller effects on energy, exergy and sustainability parameters of a small turboprop engine," Energy, Elsevier, vol. 249(C).
    7. Gürgen, Samet & Altın, İsmail, 2022. "Novel decision-making strategy for working fluid selection in Organic Rankine Cycle: A case study for waste heat recovery of a marine diesel engine," Energy, Elsevier, vol. 252(C).
    8. Syamimi Saadon & Nur Athirah Mohd Nasir, 2020. "Performance and Sustainability Analysis of an Organic Rankine Cycle System in Subcritical and Supercritical Conditions for Waste Heat Recovery," Energies, MDPI, vol. 13(12), pages 1-24, June.
    9. Rech, Sergio & Zandarin, Simone & Lazzaretto, Andrea & Frangopoulos, Christos A., 2017. "Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy," Applied Energy, Elsevier, vol. 204(C), pages 221-241.
    10. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
    11. Jesper Graa Andreasen & Andrea Meroni & Fredrik Haglind, 2017. "A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships," Energies, MDPI, vol. 10(4), pages 1-23, April.
    12. Armellini, A. & Daniotti, S. & Pinamonti, P. & Reini, M., 2018. "Evaluation of gas turbines as alternative energy production systems for a large cruise ship to meet new maritime regulations," Applied Energy, Elsevier, vol. 211(C), pages 306-317.
    13. Wang, Enhua & Yu, Zhibin & Zhang, Hongguang & Yang, Fubin, 2017. "A regenerative supercritical-subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines," Applied Energy, Elsevier, vol. 190(C), pages 574-590.
    14. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
    15. Lion, Simone & Taccani, Rodolfo & Vlaskos, Ioannis & Scrocco, Pietro & Vouvakos, Xenakis & Kaiktsis, Lambros, 2019. "Thermodynamic analysis of waste heat recovery using Organic Rankine Cycle (ORC) for a two-stroke low speed marine Diesel engine in IMO Tier II and Tier III operation," Energy, Elsevier, vol. 183(C), pages 48-60.
    16. Yiğit, Kenan, 2022. "Evaluation of energy efficiency potentials from generator operations on vessels," Energy, Elsevier, vol. 257(C).
    17. Nuchturee, Chalermkiat & Li, Tie & Xia, Hongpu, 2020. "Energy efficiency of integrated electric propulsion for ships – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Zhu, Yilin & Li, Weiyi & Sun, Guanzhong & Li, Haojie, 2018. "Thermo-economic analysis based on objective functions of an organic Rankine cycle for waste heat recovery from marine diesel engine," Energy, Elsevier, vol. 158(C), pages 343-356.
    19. Balcombe, Paul & Staffell, Iain & Kerdan, Ivan Garcia & Speirs, Jamie F. & Brandon, Nigel P. & Hawkes, Adam D., 2021. "How can LNG-fuelled ships meet decarbonisation targets? An environmental and economic analysis," Energy, Elsevier, vol. 227(C).
    20. Joon-Young Park & Jae-Weon Jeong, 2017. "Operating Energy Savings of a Liquid Desiccant and Evaporative Cooling-Assisted Air-Handling System in Marine Applications," Energies, MDPI, vol. 10(4), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023593. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.