IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223035806.html
   My bibliography  Save this article

Scalable and sustainable radiative cooling enabled by renewable poplar catkin-derived films

Author

Listed:
  • Xin, Yalu
  • Gao, Wei
  • Zhang, Chengbin
  • Chen, Yongping

Abstract

Passive radiative cooling is a vital strategy for mitigating the greenhouse effect. However, the widespread use of synthetic plastics as the primary constituent raises environmental concerns of plastic waste. Addressing these challenges necessitates the development of radiative cooling materials based on natural and renewable resources. Herein, we utilize the abundant but underutilized poplar catkins, which are currently perceived as harmful, to fabricate a poplar catkin-derived (PC) film for radiative cooling. The PC film exhibits exceptional cooling performance, with a maximum cooling power of 75.3 W m−2 under an average sunlight intensity of 819 W m−2. Remarkably, the PC film achieves a sub-ambient temperature reduction of 6.2 °C during 9:00–13:00, within a similar solar radiation intensity. Additionally, the PC film possesses outstanding properties, including UV resistance, mold resistance, and renewability. Even after multiple regeneration cycles, the film experiences only marginal decreases of 0.9 % in sunlight reflectance and 1.4 % in infrared emissivity (8–13 μm). Furthermore, the resulting film demonstrates superior resistance to mildew compared to wood, highlighting its potential for long-term usability. This work not only addresses the environmental concerns associated with synthetic plastics but also harnesses the untapped potential of readily available natural resources to develop sustainable radiative cooling materials.

Suggested Citation

  • Xin, Yalu & Gao, Wei & Zhang, Chengbin & Chen, Yongping, 2024. "Scalable and sustainable radiative cooling enabled by renewable poplar catkin-derived films," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035806
    DOI: 10.1016/j.energy.2023.130186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223035806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chelsea M. Rochman & Mark Anthony Browne & Benjamin S. Halpern & Brian T. Hentschel & Eunha Hoh & Hrissi K. Karapanagioti & Lorena M. Rios-Mendoza & Hideshige Takada & Swee Teh & Richard C. Thompson, 2013. "Classify plastic waste as hazardous," Nature, Nature, vol. 494(7436), pages 169-171, February.
    2. Liu, Jie & Xu, Chengfeng & Ao, Xianze & Lu, Kegui & Zhao, Bin & Pei, Gang, 2022. "A dual-layer polymer-based film for all-day sub-ambient radiative sky cooling," Energy, Elsevier, vol. 254(PA).
    3. Ji, Yishuang & Lv, Song, 2023. "Experimental and numerical investigation on a radiative cooling driving thermoelectric generator system," Energy, Elsevier, vol. 268(C).
    4. Yang, Rui & Niu, Dong & Pu, Jin Huan & Tang, G.H. & Wang, Xinyu & Du, Mu, 2022. "Passive all-day freshwater harvesting through a transparent radiative cooling film," Applied Energy, Elsevier, vol. 325(C).
    5. Lv, Song & Zhang, Bolong & Ji, Yishuang & Ren, Juwen & Yang, Jiahao & Lai, Yin & Chang, Zhihao, 2023. "Comprehensive research on a high performance solar and radiative cooling driving thermoelectric generator system with concentration for passive power generation," Energy, Elsevier, vol. 275(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Yan & Zhang, Xinping & Chen, Lingling & Meng, Weifeng & Wang, Cunhai & Cheng, Ziming & Liang, Huaxu & Wang, Fuqiang, 2023. "Progress in passive daytime radiative cooling: A review from optical mechanism, performance test, and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).
    3. Jitraporn Phaksopa & Roochira Sukhsangchan & Rangsiwut Keawsang & Kittipod Tanapivattanakul & Thon Thamrongnawasawat & Suchai Worachananant & Patinya Sreesamran, 2021. "Presence and Characterization of Microplastics in Coastal Fish around the Eastern Coast of Thailand," Sustainability, MDPI, vol. 13(23), pages 1-12, November.
    4. Liu, Zihan & Cai, Lu & Dong, Qinge & Zhao, Xiaoli & Han, Jianqiao, 2022. "Effects of microplastics on water infiltration in agricultural soil on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 271(C).
    5. Amina Baccar Chaabane & Esther Robbe & Gerald Schernewski & Hendrik Schubert, 2022. "Decomposition Behavior of Biodegradable and Single-Use Tableware Items in the Warnow Estuary (Baltic Sea)," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    6. Erfan Oliaei & Peter Olsén & Tom Lindström & Lars A. Berglund, 2022. "Highly reinforced and degradable lignocellulose biocomposites by polymerization of new polyester oligomers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Livia Cabernard & Stephan Pfister & Christopher Oberschelp & Stefanie Hellweg, 2022. "Growing environmental footprint of plastics driven by coal combustion," Nature Sustainability, Nature, vol. 5(2), pages 139-148, February.
    8. Pospíšilík, Václav & Honus, Stanislav & Lukeš, Roman & Jadlovec, Marek & Štukavec, Ondřej, 2024. "Differences in heat losses between glazing of various emissivities related to night sky radiation: Experimental and numerical analysis," Energy, Elsevier, vol. 290(C).
    9. Dong, Yan & Zou, Yanan & Li, Xiang & Wang, Fuqiang & Cheng, Ziming & Meng, Weifeng & Chen, Lingling & Xiang, Yang & Wang, Tong & Yan, Yuying, 2023. "Introducing masking layer for daytime radiative cooling coating to realize high optical performance, thin thickness, and excellent durability in long-term outdoor application," Applied Energy, Elsevier, vol. 344(C).
    10. Chelsea M Rochman & Brian T Hentschel & Swee J Teh, 2014. "Long-Term Sorption of Metals Is Similar among Plastic Types: Implications for Plastic Debris in Aquatic Environments," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-10, January.
    11. Oyedolapo A. Anyanwu & Elena N. Naumova & Virginia R. Chomitz & Fang Fang Zhang & Kenneth Chui & Martha I. Kartasurya & Sara C. Folta, 2022. "The Effects of the COVID-19 Pandemic on Nutrition, Health and Environment in Indonesia: A Qualitative Investigation of Perspectives from Multi-Disciplinary Experts," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    12. Ishimura, Yuichi, 2022. "The effects of the containers and packaging recycling law on the domestic recycling of plastic waste: Evidence from Japan," Ecological Economics, Elsevier, vol. 201(C).
    13. Tobias D. Nielsen & Jacob Hasselbalch & Karl Holmberg & Johannes Stripple, 2020. "Politics and the plastic crisis: A review throughout the plastic life cycle," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    14. Nickyar Ghadirinejad & Fredric Ottermo & Raheleh Nowzari & Naif Alsaadi & Mazyar Ghadiri Nejad, 2023. "Optimizing a Green and Sustainable Off-Grid Energy-System Design: A Real Case," Sustainability, MDPI, vol. 15(17), pages 1-16, August.
    15. Sri Devi Kumari, T. & Jebaraj, Adriel J.J. & Raj, T. Antony & Jeyakumar, D. & Kumar, T. Prem, 2016. "A kish graphitic lithium-insertion anode material obtained from non-biodegradable plastic waste," Energy, Elsevier, vol. 95(C), pages 483-493.
    16. Zhaoyi Zhuang & Yanbiao Xu & Qian Wu & Bing Liu & Bowen Li & Jin Zhao & Xuebin Yang, 2022. "Experimental Study on the Performance of a Space Radiation Cooling System under Different Environmental Factors," Energies, MDPI, vol. 15(19), pages 1-18, October.
    17. Zhang, Chunxiao & Chen, Lei & Zhou, Ziqi & Wang, Zhanwei & Wang, Lin & Zhang, Yingbo, 2023. "Cooling performance of all-orientated building facades integrated with photovoltaic-sky radiative cooling system in summer," Renewable Energy, Elsevier, vol. 217(C).
    18. Jiang, Kaiyu & Zhang, Kai & Shi, Zijie & Li, Haoran & Wu, Bingyang & Mahian, Omid & Zhu, Yutong, 2023. "Experimental and numerical study on the potential of a new radiative cooling paint boosted by SiO2 microparticles for energy saving," Energy, Elsevier, vol. 283(C).
    19. Zhao, Bin & Liu, Jie & Hu, Mingke & Ao, Xianze & Li, Lanxin & Xuan, Qingdong & Pei, Gang, 2023. "Performance analysis of a broadband selective absorber/emitter for hybrid utilization of solar thermal and radiative cooling," Renewable Energy, Elsevier, vol. 205(C), pages 763-771.
    20. Zulfiqar Ali Memon & Mohammad Amin Akbari, 2023. "Optimizing Hybrid Photovoltaic/Battery/Diesel Microgrids in Distribution Networks Considering Uncertainty and Reliability," Sustainability, MDPI, vol. 15(18), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.