IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v287y2024ics0360544223029791.html
   My bibliography  Save this article

A novel hybrid grey system forecasting model based on seasonal fluctuation characteristics for electricity consumption in primary industry

Author

Listed:
  • Li, Cheng
  • Qi, Qi

Abstract

As a critical economic index, the annual electricity consumption plays an essential role in reflecting the domestic economic environment. For the sustainable development of the electricity power industry, an accurate electricity consumption forecasting model can not only guide the power generation work in advance but also help to determine the regulation law of electricity economic development. To accurately describe the seasonal fluctuation characteristics of electricity consumption in China's primary industry, Fourier modified grey forecasting model based on seasonal fluctuation characteristics and initial condition optimization (FDSGM(1,1,x(β),γ)) was put forward. Based on the empirical data of seasonal electricity consumption in China's primary industry, comparing with SGM(1,1), RSGM(1,1) and DSGM(1,1), the minimum mean absolute percentage errors (MAPEs) in the training set was reduced to 0.2 %, while that in the testing set was also reduced to 6.02 %, which was significantly better than those of the previous three forecasting models and was also markedly better than the prediction accuracy of reference [15]. The results indicated that FDSGM(1,1,x(β),γ) could identify seasonal fluctuations and variations and was a reliable seasonal forecasting tool that could be used to ensure sustainable development of electricity markets.

Suggested Citation

  • Li, Cheng & Qi, Qi, 2024. "A novel hybrid grey system forecasting model based on seasonal fluctuation characteristics for electricity consumption in primary industry," Energy, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223029791
    DOI: 10.1016/j.energy.2023.129585
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029791
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129585?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223029791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.