IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223020169.html
   My bibliography  Save this article

A study of particle flow in a ribbon reactor: Effect of ribbon configuration on mixing and heat transfer performance

Author

Listed:
  • Zuo, Zhijian
  • Liu, Tian
  • Li, Weihong
  • Xiao, Hong
  • Lin, Taiping
  • Gong, Shuguang
  • Zhang, Jianping

Abstract

The mixing and heat transfer of particles are two important operating units in the lithium-ion battery industry due to the cycling performance of the cathode is mainly dependent on the mixing and heat transfer performance of granular matter, such as needle coke and asphalt particles. In this work, simulations of the particle mixing and heat transfer process in a ribbon reactor were conducted based on the three-dimensional discrete element method (DEM). The stacking angle test, rotary drum, and thermal conductivity test were designed to obtain the DEM parameters. The trajectory of tracer particles, total velocity fluctuation, coordinate number, and relative standard deviation (RSD) were used to analyze the mixing and heat transfer process. It was found that particles in the ribbon reactor experience two types of movement. The first one is high-speed tangential movement, and the second one is low-speed recirculation movement in the vertical plane. Particles near the vessel wall and impeller shaft are first heated and a cold core is generated in the initial stage of heat transfer. Results obtained indicate that the mixing performance increases slightly with the increase of ribbon number. The mixing performance increases with the increase of velocity fluctuation and the decrease of coordination number, and the heat transfer can be improved by enhancing the mixing performance of granular matter. Increasing the ribbon width and ribbon pitch can improve the heat transfer performance, while the ribbon pitch has little influence on the mixing performance.

Suggested Citation

  • Zuo, Zhijian & Liu, Tian & Li, Weihong & Xiao, Hong & Lin, Taiping & Gong, Shuguang & Zhang, Jianping, 2023. "A study of particle flow in a ribbon reactor: Effect of ribbon configuration on mixing and heat transfer performance," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223020169
    DOI: 10.1016/j.energy.2023.128622
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223020169
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128622?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Zhigang & Zhang, Shang & Tian, Xing & Yang, Jian & Wang, Qiuwang, 2020. "Numerical investigation of tube oscillation in gravity-driven granular flow with heat transfer by discrete element method," Energy, Elsevier, vol. 207(C).
    2. Feng, Yan-Hui & Zhang, Zhen & Qiu, Lin & Zhang, Xin-Xin, 2019. "Heat recovery process modelling of semi-molten blast furnace slag in a moving bed using XDEM," Energy, Elsevier, vol. 186(C).
    3. Arno Kwade & Wolfgang Haselrieder & Ruben Leithoff & Armin Modlinger & Franz Dietrich & Klaus Droeder, 2018. "Current status and challenges for automotive battery production technologies," Nature Energy, Nature, vol. 3(4), pages 290-300, April.
    4. Fang, Wenchao & Chen, Sheng & Xu, Jingying & Zeng, Kuo, 2021. "Predicting heat transfer coefficient of a shell-and-plate, moving packed-bed particle-to-sCO2 heat exchanger for concentrating solar power," Energy, Elsevier, vol. 217(C).
    5. Li, Dongfang & Kim, Kyeongho & Kim, Minwoo & Zeng, Yijie & Yang, Zhongzhi & Lee, Sangho & Lu, Xiaofeng & Jeon, Chung-Hwan, 2021. "Effects of particle size on bed-to-surface heat transfer in bubbling fluidized bed heat exchangers of 550 MWe ultra-supercritical CFB boiler," Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Xing & Jia, Haonan & Zhang, Jiayue & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2023. "Heat transfer characteristic of particle flow around the out-wall of different geometries," Energy, Elsevier, vol. 280(C).
    2. Xing Tian & Jian Yang & Zhigang Guo & Qiuwang Wang, 2021. "Numerical Investigation of Gravity-Driven Granular Flow around the Vertical Plate: Effect of Pin-Fin and Oscillation on the Heat Transfer," Energies, MDPI, vol. 14(8), pages 1-14, April.
    3. Abdollahifar, M. & Molaiyan, P. & Lassi, U. & Wu, N.L. & Kwade, A., 2022. "Multifunctional behaviour of graphite in lithium–sulfur batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Entwistle, Jake & Ge, Ruihuan & Pardikar, Kunal & Smith, Rachel & Cumming, Denis, 2022. "Carbon binder domain networks and electrical conductivity in lithium-ion battery electrodes: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    5. Kriegler, Johannes & Hille, Lucas & Stock, Sandro & Kraft, Ludwig & Hagemeister, Jan & Habedank, Jan Bernd & Jossen, Andreas & Zaeh, Michael F., 2021. "Enhanced performance and lifetime of lithium-ion batteries by laser structuring of graphite anodes," Applied Energy, Elsevier, vol. 303(C).
    6. Guo, Zhigang & Zhang, Shang & Tian, Xing & Yang, Jian & Wang, Qiuwang, 2020. "Numerical investigation of tube oscillation in gravity-driven granular flow with heat transfer by discrete element method," Energy, Elsevier, vol. 207(C).
    7. Jacek Paś, 2023. "Issues Related to Power Supply Reliability in Integrated Electronic Security Systems Operated in Buildings and Vast Areas," Energies, MDPI, vol. 16(8), pages 1-22, April.
    8. Duffner, Fabian & Mauler, Lukas & Wentker, Marc & Leker, Jens & Winter, Martin, 2021. "Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs," International Journal of Production Economics, Elsevier, vol. 232(C).
    9. Li, Dongfang & Qu, Xiaoxiao & Li, Junjie & Hong, Suck Won & Jeon, Chung-hwan, 2022. "Microstructural development of product layer during limestone sulfation and its relationship to agglomeration in large-scale CFB boiler," Energy, Elsevier, vol. 238(PC).
    10. Marius Chofor Asaba & Fabian Duffner & Florian Frieden & Jens Leker & Stephan von Delft, 2022. "Location choice for large‐scale battery manufacturing plants: Exploring the role of clean energy, costs, and knowledge on location decisions in Europe," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1514-1527, August.
    11. Grabmann, Sophie & Bernauer, Christian & Wach, Lovis & Leeb, Matthias & Zaeh, Michael F., 2023. "A method for the reproducible and accurate determination of electrical resistances based on multi-layer joints in lithium-ion batteries," Applied Energy, Elsevier, vol. 349(C).
    12. Gan, Di & Zhu, Peiwang & Xu, Haoran & Xie, Xiangyu & Chai, Fengyuan & Gong, Jueyuan & Li, Jiasong & Xiao, Gang, 2023. "Experimental and simulation study of Mn–Fe particles in a controllable-flow particle solar receiver for high-temperature thermochemical energy storage," Energy, Elsevier, vol. 282(C).
    13. Mona Faraji Niri & Koorosh Aslansefat & Sajedeh Haghi & Mojgan Hashemian & Rüdiger Daub & James Marco, 2023. "A Review of the Applications of Explainable Machine Learning for Lithium–Ion Batteries: From Production to State and Performance Estimation," Energies, MDPI, vol. 16(17), pages 1-38, September.
    14. Plunkett, Samuel T. & Chen, Chengxiu & Rojaee, Ramin & Doherty, Patrick & Sik Oh, Yun & Galazutdinova, Yana & Krishnamurthy, Mahesh & Al-Hallaj, Said, 2021. "Enhancing thermal safety in lithium-ion battery packs through parallel cell ‘current dumping’ mitigation," Applied Energy, Elsevier, vol. 286(C).
    15. Xie, Huaqing & Li, Rongquan & Yu, Zhenyu & Wang, Zhengyu & Yu, Qingbo & Qin, Qin, 2020. "Combined steam/dry reforming of bio-oil for H2/CO syngas production with blast furnace slag as heat carrier," Energy, Elsevier, vol. 200(C).
    16. Lv, Yi-Wen & Zhu, Xun & Wang, Hong & Dai, Mao-Lin & Ding, Yu-Dong & Wu, Jun-Jun & Liao, Qiang, 2021. "A hybrid cooling system to enable adhesion-free heat recovery from centrifugal granulated slag particles," Applied Energy, Elsevier, vol. 303(C).
    17. Xiong, Ruoyu & Zhang, Tengfang & Huang, Tianlun & Li, Maoyuan & Zhang, Yun & Zhou, Huamin, 2020. "Improvement of electrochemical homogeneity for lithium-ion batteries enabled by a conjoined-electrode structure," Applied Energy, Elsevier, vol. 270(C).
    18. John H. T. Luong & Cang Tran & Di Ton-That, 2022. "A Paradox over Electric Vehicles, Mining of Lithium for Car Batteries," Energies, MDPI, vol. 15(21), pages 1-25, October.
    19. Román-Ramírez, L.A. & Marco, J., 2022. "Design of experiments applied to lithium-ion batteries: A literature review," Applied Energy, Elsevier, vol. 320(C).
    20. Wu, Junjun & Tan, Yu & Li, Peng & Wang, Hong & Zhu, Xun & Liao, Qiang, 2022. "Centrifugal-Granulation-Assisted thermal energy recovery towards low-carbon blast furnace slag treatment: State of the art and future challenges," Applied Energy, Elsevier, vol. 325(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223020169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.