IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223022764.html
   My bibliography  Save this article

Maximizing energy output of a vapor chamber-based high concentrated PV-thermoelectric generator hybrid system

Author

Listed:
  • Lv, Yaya
  • Han, Xinyue
  • Chen, Xu
  • Yao, Yiping

Abstract

Thermal management of triple-junction solar cell is crucial for enhancing electrical efficiency of a high concentrated photovoltaic (HCPV) system. In this paper, a HCPV system integrated with vapor chamber (VC) cooling and thermoelectric generator (TEG) is proposed to maximize the energy output. The VC as a passive cooling device can effectively extract the excessive heat from the triple-junction cell and the TEG module are used to convert the waste heat into electrical power thereby harvesting more energy. A detailed unsteady-state modeling of the VC based HCPV/TEG system is established in MATLAB. The effects of new VC structure, TEG type and concentration ratio on the dynamic performance of the system are discussed and a comparison with the CPV-TEG system without VC cooling is provided. Results reveal that effective cooling of the new VCs can maintain the sophisticated cell under 1000 suns at below 329 K and the average exergy efficiency of the system is 31.20%. It is observed that the appropriate selection of TEG module can improve the system performance. Using TEG5, the proportion of CPV power in total power for the proposed system reaches 99.02%, which increases by 2.81% compared with that of the reported CPV-TEG system without VC cooling.

Suggested Citation

  • Lv, Yaya & Han, Xinyue & Chen, Xu & Yao, Yiping, 2023. "Maximizing energy output of a vapor chamber-based high concentrated PV-thermoelectric generator hybrid system," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022764
    DOI: 10.1016/j.energy.2023.128882
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223022764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    2. Pabon, Juan J.G. & Khosravi, Ali & Malekan, M. & Sandoval, Oscar R., 2020. "Modeling and energy analysis of a linear concentrating photovoltaic system cooled by two-phase mechanical pumped loop system," Renewable Energy, Elsevier, vol. 157(C), pages 273-289.
    3. Li, Dianhong & Xuan, Yimin & Yin, Ershuai & Li, Qiang, 2018. "Conversion efficiency gain for concentrated triple-junction solar cell system through thermal management," Renewable Energy, Elsevier, vol. 126(C), pages 960-968.
    4. Hashim, H. & Bomphrey, J.J. & Min, G., 2016. "Model for geometry optimisation of thermoelectric devices in a hybrid PV/TE system," Renewable Energy, Elsevier, vol. 87(P1), pages 458-463.
    5. Han, Xinyue & Zhao, Xiaobo & Chen, Xiaobin, 2020. "Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling," Renewable Energy, Elsevier, vol. 162(C), pages 55-70.
    6. Abo-Zahhad, Essam M. & Ookawara, Shinichi & Radwan, Ali & El-Shazly, A.H. & Elkady, M.F., 2019. "Numerical analyses of hybrid jet impingement/microchannel cooling device for thermal management of high concentrator triple-junction solar cell," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Xu, Ning & Ji, Jie & Sun, Wei & Huang, Wenzhu & Li, Jing & Jin, Zhuling, 2016. "Numerical simulation and experimental validation of a high concentration photovoltaic/thermal module based on point-focus Fresnel lens," Applied Energy, Elsevier, vol. 168(C), pages 269-281.
    8. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2020. "Feasibility analysis of a tandem photovoltaic-thermoelectric hybrid system under solar concentration," Renewable Energy, Elsevier, vol. 162(C), pages 1828-1841.
    9. Zhu, Wei & Deng, Yuan & Wang, Yao & Shen, Shengfei & Gulfam, Raza, 2016. "High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management," Energy, Elsevier, vol. 100(C), pages 91-101.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2019. "Feasibility analysis of a concentrating photovoltaic-thermoelectric-thermal cogeneration," Applied Energy, Elsevier, vol. 236(C), pages 560-573.
    2. Wen, Xin & Ji, Jie & Song, Zhiying, 2021. "Performance comparison of two micro-channel heat pipe LFPV/T systems plus thermoelectric generators with and without aerogel glazing," Energy, Elsevier, vol. 229(C).
    3. Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
    4. Hong, Sihui & Zhang, Bohan & Dang, Chaobin & Hihara, Eiji, 2020. "Development of two-phase flow microchannel heat sink applied to solar-tracking high-concentration photovoltaic thermal hybrid system," Energy, Elsevier, vol. 212(C).
    5. Ge, Ya & Xiao, Qiyin & Wang, Wenhao & Lin, Yousheng & Huang, Si-Min, 2022. "Design of high-performance photovoltaic-thermoelectric hybrid systems using multi-objective genetic algorithm," Renewable Energy, Elsevier, vol. 200(C), pages 136-145.
    6. Cameron, William James & Reddy, K. Srinivas & Mallick, Tapas Kumar, 2022. "Review of high concentration photovoltaic thermal hybrid systems for highly efficient energy cogeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    7. Rezania, A. & Sera, D. & Rosendahl, L.A., 2016. "Coupled thermal model of photovoltaic-thermoelectric hybrid panel for sample cities in Europe," Renewable Energy, Elsevier, vol. 99(C), pages 127-135.
    8. Zhang, Jin & Xuan, Yimin, 2019. "The electric feature synergy in the photovoltaic - Thermoelectric hybrid system," Energy, Elsevier, vol. 181(C), pages 387-394.
    9. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2019. "Series of detail comparison and optimization of thermoelectric element geometry considering the PV effect," Renewable Energy, Elsevier, vol. 130(C), pages 930-942.
    10. Gao, Yuanzhi & Wang, Changling & Wu, Dongxu & Dai, Zhaofeng & Chen, Bo & Zhang, Xiaosong, 2022. "A numerical evaluation of the bifacial concentrated PV-STEG system cooled by mini-channel heat sink," Renewable Energy, Elsevier, vol. 192(C), pages 716-730.
    11. Zhang, Heng & Yue, Han & Huang, Jiguang & Liang, Kai & Chen, Haiping, 2021. "Experimental studies on a low concentrating photovoltaic/thermal (LCPV/T) collector with a thermoelectric generator (TEG) module," Renewable Energy, Elsevier, vol. 171(C), pages 1026-1040.
    12. Fahad Ghallab Al-Amri & Taher Maatallah & Richu Zachariah & Ahmed T. Okasha & Abdullah Khalid Alghamdi, 2022. "Enhanced Net Channel Based-Heat Sink Designs for Cooling of High Concentration Photovoltaic (HCPV) Systems in Dammam City," Sustainability, MDPI, vol. 14(7), pages 1-22, March.
    13. Ji, Yishuang & Lv, Song & Qian, Zuoqin & Ji, Yitong & Ren, Juwen & Liang, Kaiming & Wang, Shulong, 2022. "Comparative study on cooling method for concentrating photovoltaic system," Energy, Elsevier, vol. 253(C).
    14. Cai, Yang & Wang, Wei-Wei & Liu, Cheng-Wei & Ding, Wen-Tao & Liu, Di & Zhao, Fu-Yun, 2020. "Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic thermoelectric generators for green building operations," Renewable Energy, Elsevier, vol. 147(P1), pages 1565-1583.
    15. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "One-day performance evaluation of photovoltaic-thermoelectric hybrid system," Energy, Elsevier, vol. 143(C), pages 337-346.
    16. Gad, Ramadan & Mahmoud, Hatem & Hassan, Hamdy, 2023. "Performance evaluation of direct and indirect thermal regulation of low concentrated (via compound parabolic collector) solar panel using phase change material-flat heat pipe cooling system," Energy, Elsevier, vol. 274(C).
    17. Song, Zhiying & Ji, Jie & Li, Zhaomeng, 2022. "Performance of a heat pump system in combination with thermoelectric generators," Energy, Elsevier, vol. 239(PA).
    18. Abou-Ziyan, Hosny & Ibrahim, Mohammed & Abdel-Hameed, Hala, 2020. "Performance modeling and analysis of high-concentration multi-junction photovoltaics using advanced hybrid cooling systems," Applied Energy, Elsevier, vol. 269(C).
    19. Zhang, Jin & Xuan, Yimin, 2017. "Performance improvement of a photovoltaic - Thermoelectric hybrid system subjecting to fluctuant solar radiation," Renewable Energy, Elsevier, vol. 113(C), pages 1551-1558.
    20. Ding, Fan & Han, Xinyue, 2023. "Performance enhancement of a nanofluid filtered solar membrane distillation system using heat pump for electricity/water cogeneration," Renewable Energy, Elsevier, vol. 210(C), pages 79-94.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.