IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp1828-1841.html
   My bibliography  Save this article

Feasibility analysis of a tandem photovoltaic-thermoelectric hybrid system under solar concentration

Author

Listed:
  • Yin, Ershuai
  • Li, Qiang
  • Xuan, Yimin

Abstract

This paper aims to provide a comprehensive feasibility analysis of the tandem concentration photovoltaic-thermoelectric (CPV-TE) hybrid system to guide practical hybrid system design. Theoretical models and experimental equipment of the concentration photovoltaic (CPV) system and the CPV-TE hybrid system are both established. The working temperature and output power of the two systems at different solar concentration ratios are first measured and compared. Then, the effects of different device performance and system operating parameters, including PV reference efficiency, PV temperature coefficient, TE figure of merit, concentration ratio, thermal contact resistance, cooling performance, coolant temperature, and TE thermal resistance, on the feasibility of coupling utilization are theoretically investigated. Finally, some design principles of the tandem hybrid system are provided based on the research results. The experimental results demonstrate the superiority of hybrid utilization when using a single-junction gallium arsenide PV cell, and a maximum output power improvement of 8.7% (from 1.38W to 1.5W) can be achieved when the concentration ratio is 255. The theoretical results illustrate that device performance parameters are the main factors that determine the feasibility of hybrid utilization. Choosing appropriate system operating parameters is also important to ensure the superiority of the hybrid system.

Suggested Citation

  • Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2020. "Feasibility analysis of a tandem photovoltaic-thermoelectric hybrid system under solar concentration," Renewable Energy, Elsevier, vol. 162(C), pages 1828-1841.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:1828-1841
    DOI: 10.1016/j.renene.2020.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812031572X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karami Lakeh, Hossein & Kaatuzian, Hassan & Hosseini, Reza, 2019. "A parametrical study on photo-electro-thermal performance of an integrated thermoelectric-photovoltaic cell," Renewable Energy, Elsevier, vol. 138(C), pages 542-550.
    2. Liang, Shen & Zheng, Hongfei & Ma, Xinglong & Cui, Dandan, 2020. "Design and experimental investigation on a solar concentrating photovoltaic underwater," Energy, Elsevier, vol. 204(C).
    3. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    4. Zhang, Jin & Xuan, Yimin, 2017. "Performance improvement of a photovoltaic - Thermoelectric hybrid system subjecting to fluctuant solar radiation," Renewable Energy, Elsevier, vol. 113(C), pages 1551-1558.
    5. Rodrigo, P.M. & Valera, A. & Fernández, E.F. & Almonacid, F.M., 2019. "Performance and economic limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules," Applied Energy, Elsevier, vol. 238(C), pages 1150-1162.
    6. Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
    7. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2019. "Feasibility analysis of a concentrating photovoltaic-thermoelectric-thermal cogeneration," Applied Energy, Elsevier, vol. 236(C), pages 560-573.
    8. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2019. "Series of detail comparison and optimization of thermoelectric element geometry considering the PV effect," Renewable Energy, Elsevier, vol. 130(C), pages 930-942.
    9. Li, Dianhong & Xuan, Yimin & Li, Qiang & Hong, Hui, 2017. "Exergy and energy analysis of photovoltaic-thermoelectric hybrid systems," Energy, Elsevier, vol. 126(C), pages 343-351.
    10. Li, Dianhong & Xuan, Yimin & Yin, Ershuai & Li, Qiang, 2018. "Conversion efficiency gain for concentrated triple-junction solar cell system through thermal management," Renewable Energy, Elsevier, vol. 126(C), pages 960-968.
    11. Rezania, A. & Rosendahl, L.A., 2017. "Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system," Applied Energy, Elsevier, vol. 187(C), pages 380-389.
    12. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
    13. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "One-day performance evaluation of photovoltaic-thermoelectric hybrid system," Energy, Elsevier, vol. 143(C), pages 337-346.
    14. Zhou, Yi-Peng & Li, Ming-Jia & Hu, Yi-Huang & Ma, Teng, 2020. "Design and experimental investigation of a novel full solar spectrum utilization system," Applied Energy, Elsevier, vol. 260(C).
    15. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    16. Li, Guiqiang & Shittu, Samson & Diallo, Thierno M.O. & Yu, Min & Zhao, Xudong & Ji, Jie, 2018. "A review of solar photovoltaic-thermoelectric hybrid system for electricity generation," Energy, Elsevier, vol. 158(C), pages 41-58.
    17. Zhang, Jin & Xuan, Yimin, 2019. "The electric feature synergy in the photovoltaic - Thermoelectric hybrid system," Energy, Elsevier, vol. 181(C), pages 387-394.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Ershuai & Li, Qiang, 2023. "High-efficiency dynamic lossless coupling of a spectrum splitting photovoltaic-thermoelectric system," Energy, Elsevier, vol. 282(C).
    2. Ge, Minghui & Zhao, Yuntong & Li, Yanzhe & He, Wei & Xie, Liyao & Zhao, Yulong, 2022. "Structural optimization of thermoelectric modules in a concentration photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 244(PB).
    3. Yin, Ershuai & Li, Qiang, 2022. "Achieving extensive lossless coupling of photovoltaic and thermoelectric devices through parallel connection," Renewable Energy, Elsevier, vol. 193(C), pages 565-575.
    4. Gao, Yuanzhi & Wang, Changling & Wu, Dongxu & Dai, Zhaofeng & Chen, Bo & Zhang, Xiaosong, 2022. "A numerical evaluation of the bifacial concentrated PV-STEG system cooled by mini-channel heat sink," Renewable Energy, Elsevier, vol. 192(C), pages 716-730.
    5. Zhang, Heng & Yue, Han & Huang, Jiguang & Liang, Kai & Chen, Haiping, 2021. "Experimental studies on a low concentrating photovoltaic/thermal (LCPV/T) collector with a thermoelectric generator (TEG) module," Renewable Energy, Elsevier, vol. 171(C), pages 1026-1040.
    6. Liang, Tao & Fu, Tong & Hu, Cong & Chen, Xiaohang & Su, Shanhe & Chen, Jincan, 2021. "Optimum matching of photovoltaic–thermophotovoltaic cells efficiently utilizing full-spectrum solar energy," Renewable Energy, Elsevier, vol. 173(C), pages 942-952.
    7. Lv, Yaya & Han, Xinyue & Chen, Xu & Yao, Yiping, 2023. "Maximizing energy output of a vapor chamber-based high concentrated PV-thermoelectric generator hybrid system," Energy, Elsevier, vol. 282(C).
    8. Cui, Y.J. & Wang, B.L. & Wang, K.F. & Wang, G.G. & Zhang, A.B., 2022. "An analytical model to evaluate the fatigue crack effects on the hybrid photovoltaic-thermoelectric device," Renewable Energy, Elsevier, vol. 182(C), pages 923-933.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
    2. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2019. "Feasibility analysis of a concentrating photovoltaic-thermoelectric-thermal cogeneration," Applied Energy, Elsevier, vol. 236(C), pages 560-573.
    3. Yin, Ershuai & Li, Qiang, 2022. "Achieving extensive lossless coupling of photovoltaic and thermoelectric devices through parallel connection," Renewable Energy, Elsevier, vol. 193(C), pages 565-575.
    4. He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
    5. Rodrigo, P.M. & Valera, A. & Fernández, E.F. & Almonacid, F.M., 2019. "Performance and economic limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules," Applied Energy, Elsevier, vol. 238(C), pages 1150-1162.
    6. Sripadmanabhan Indira, Sridhar & Aravind Vaithilingam, Chockalingam & Narasingamurthi, Kulasekharan & Sivasubramanian, Ramsundar & Chong, Kok-Keong & Saidur, R., 2022. "Mathematical modelling, performance evaluation and exergy analysis of a hybrid photovoltaic/thermal-solar thermoelectric system integrated with compound parabolic concentrator and parabolic trough con," Applied Energy, Elsevier, vol. 320(C).
    7. He, Y. & Tao, Y.B. & Zhao, C.Y. & Yu, X.K., 2022. "Structure parameter analysis and optimization of photovoltaic-phase change material-thermoelectric coupling system under space conditions," Renewable Energy, Elsevier, vol. 200(C), pages 320-333.
    8. Ge, Minghui & Zhao, Yuntong & Li, Yanzhe & He, Wei & Xie, Liyao & Zhao, Yulong, 2022. "Structural optimization of thermoelectric modules in a concentration photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 244(PB).
    9. Li, Guiqiang & Shittu, Samson & Ma, Xiaoli & Zhao, Xudong, 2019. "Comparative analysis of thermoelectric elements optimum geometry between photovoltaic-thermoelectric and solar thermoelectric," Energy, Elsevier, vol. 171(C), pages 599-610.
    10. Yin, Ershuai & Li, Qiang, 2023. "High-efficiency dynamic lossless coupling of a spectrum splitting photovoltaic-thermoelectric system," Energy, Elsevier, vol. 282(C).
    11. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    12. Lorenzi, Bruno & Mariani, Paolo & Reale, Andrea & Di Carlo, Aldo & Chen, Gang & Narducci, Dario, 2021. "Practical development of efficient thermoelectric – Photovoltaic hybrid systems based on wide-gap solar cells," Applied Energy, Elsevier, vol. 300(C).
    13. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    14. Zhang, Jin & Xuan, Yimin, 2019. "The electric feature synergy in the photovoltaic - Thermoelectric hybrid system," Energy, Elsevier, vol. 181(C), pages 387-394.
    15. Zhang, Heng & Yue, Han & Huang, Jiguang & Liang, Kai & Chen, Haiping, 2021. "Experimental studies on a low concentrating photovoltaic/thermal (LCPV/T) collector with a thermoelectric generator (TEG) module," Renewable Energy, Elsevier, vol. 171(C), pages 1026-1040.
    16. Cui, Y.J. & Wang, B.L. & Wang, K.F. & Wang, G.G. & Zhang, A.B., 2022. "An analytical model to evaluate the fatigue crack effects on the hybrid photovoltaic-thermoelectric device," Renewable Energy, Elsevier, vol. 182(C), pages 923-933.
    17. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    18. Rejeb, Oussama & Shittu, Samson & Ghenai, Chaouki & Li, Guiqiang & Zhao, Xudong & Bettayeb, Maamar, 2020. "Optimization and performance analysis of a solar concentrated photovoltaic-thermoelectric (CPV-TE) hybrid system," Renewable Energy, Elsevier, vol. 152(C), pages 1342-1353.
    19. Li, Guiqiang & Shittu, Samson & zhou, Kai & Zhao, Xudong & Ma, Xiaoli, 2019. "Preliminary experiment on a novel photovoltaic-thermoelectric system in summer," Energy, Elsevier, vol. 188(C).
    20. Shittu, Samson & Li, Guiqiang & Xuan, Qindong & Zhao, Xudong & Ma, Xiaoli & Cui, Yu, 2020. "Electrical and mechanical analysis of a segmented solar thermoelectric generator under non-uniform heat flux," Energy, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:1828-1841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.