IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v27y2002i10p975-986.html
   My bibliography  Save this article

Comparison of the Olmo model with global irradiance measurements on vertical surfaces at Madrid

Author

Listed:
  • Ruiz, Enrique
  • Soler, Alfonso
  • Robledo, Luis

Abstract

The recently published Olmo model estimates global irradiance on inclined planes. It only requires the horizontal global irradiance and the sun’s azimuth and elevation as input parameters. As a consequence, it does not contain empirical coefficients that need determination for each location. Olmo and co-authors found a good agreement between predicted and experimental values obtained at their measuring site when a factor accounting for ground-reflected radiation was introduced in the model. In the present paper, the Olmo model is assessed in Madrid for vertical planes facing north, south, east and west. The model gives a root mean square error of ≅27%, when all data are used. With the data for the north-facing plane it becomes worse, i.e. ≅52%.

Suggested Citation

  • Ruiz, Enrique & Soler, Alfonso & Robledo, Luis, 2002. "Comparison of the Olmo model with global irradiance measurements on vertical surfaces at Madrid," Energy, Elsevier, vol. 27(10), pages 975-986.
  • Handle: RePEc:eee:energy:v:27:y:2002:i:10:p:975-986
    DOI: 10.1016/S0360-5442(02)00013-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544202000130
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(02)00013-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olmo, F.J & Vida, J & Foyo, I & Castro-Diez, Y & Alados-Arboledas, L, 1999. "Prediction of global irradiance on inclined surfaces from horizontal global irradiance," Energy, Elsevier, vol. 24(8), pages 689-704.
    2. Robledo, Luis & soler, Alfonso, 1998. "Modelling irradiance on inclined planes with an anisotropic model," Energy, Elsevier, vol. 23(3), pages 193-201.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayvazoğluyüksel, Özge & Filik, Ümmühan Başaran, 2018. "Estimation methods of global solar radiation, cell temperature and solar power forecasting: A review and case study in Eskişehir," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 639-653.
    2. Evseev, Efim G. & Kudish, Avraham I., 2009. "An assessment of a revised Olmo et al. model to predict solar global radiation on a tilted surface at Beer Sheva, Israel," Renewable Energy, Elsevier, vol. 34(1), pages 112-119.
    3. Muzathik, A.M. & Ibrahim, M.Z. & Samo, K.B. & Wan Nik, W.B., 2011. "Estimation of global solar irradiation on horizontal and inclined surfaces based on the horizontal measurements," Energy, Elsevier, vol. 36(2), pages 812-818.
    4. Notton, Gilles & Paoli, Christophe & Vasileva, Siyana & Nivet, Marie Laure & Canaletti, Jean-Louis & Cristofari, Christian, 2012. "Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks," Energy, Elsevier, vol. 39(1), pages 166-179.
    5. García, Ignacio & de Blas, Marian & Hernández, Begoña & Sáenz, Carlos & Torres, José Luis, 2021. "Diffuse irradiance on tilted planes in urban environments: Evaluation of models modified with sky and circumsolar view factors," Renewable Energy, Elsevier, vol. 180(C), pages 1194-1209.
    6. Cheng, C.L. & Chan, C.Y. & Chen, C.L., 2006. "An empirical approach to estimating monthly radiation on south-facing tilted planes for building application," Energy, Elsevier, vol. 31(14), pages 2940-2957.
    7. de Simón-Martín, Miguel & Alonso-Tristán, Cristina & Díez-Mediavilla, Montserrat, 2017. "Diffuse solar irradiance estimation on building's façades: Review, classification and benchmarking of 30 models under all sky conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 783-802.
    8. Cheng, C.L. & Chan, C.Y. & Chen, C.L., 2005. "Empirical approach to BIPV evaluation of solar irradiation for building applications," Renewable Energy, Elsevier, vol. 30(7), pages 1055-1074.
    9. Notton, Gilles & Paoli, Christophe & Ivanova, Liliana & Vasileva, Siyana & Nivet, Marie Laure, 2013. "Neural network approach to estimate 10-min solar global irradiation values on tilted planes," Renewable Energy, Elsevier, vol. 50(C), pages 576-584.
    10. Dahmani, Kahina & Dizene, Rabah & Notton, Gilles & Paoli, Christophe & Voyant, Cyril & Nivet, Marie Laure, 2014. "Estimation of 5-min time-step data of tilted solar global irradiation using ANN (Artificial Neural Network) model," Energy, Elsevier, vol. 70(C), pages 374-381.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, C.L. & Chan, C.Y. & Chen, C.L., 2005. "Empirical approach to BIPV evaluation of solar irradiation for building applications," Renewable Energy, Elsevier, vol. 30(7), pages 1055-1074.
    2. Cheng, C.L. & Chan, C.Y. & Chen, C.L., 2006. "An empirical approach to estimating monthly radiation on south-facing tilted planes for building application," Energy, Elsevier, vol. 31(14), pages 2940-2957.
    3. Notton, Gilles & Paoli, Christophe & Ivanova, Liliana & Vasileva, Siyana & Nivet, Marie Laure, 2013. "Neural network approach to estimate 10-min solar global irradiation values on tilted planes," Renewable Energy, Elsevier, vol. 50(C), pages 576-584.
    4. Grażyna Frydrychowicz-Jastrzębska & Artur Bugała, 2015. "Modeling the Distribution of Solar Radiation on a Two-Axis Tracking Plane for Photovoltaic Conversion," Energies, MDPI, vol. 8(2), pages 1-17, January.
    5. Notton, Gilles & Paoli, Christophe & Vasileva, Siyana & Nivet, Marie Laure & Canaletti, Jean-Louis & Cristofari, Christian, 2012. "Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks," Energy, Elsevier, vol. 39(1), pages 166-179.
    6. Dahmani, Kahina & Dizene, Rabah & Notton, Gilles & Paoli, Christophe & Voyant, Cyril & Nivet, Marie Laure, 2014. "Estimation of 5-min time-step data of tilted solar global irradiation using ANN (Artificial Neural Network) model," Energy, Elsevier, vol. 70(C), pages 374-381.
    7. Koster, Daniel & Minette, Frank & Braun, Christian & O'Nagy, Oliver, 2019. "Short-term and regionalized photovoltaic power forecasting, enhanced by reference systems, on the example of Luxembourg," Renewable Energy, Elsevier, vol. 132(C), pages 455-470.
    8. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2008. "Solar radiation modelling for the simulation of photovoltaic systems," Renewable Energy, Elsevier, vol. 33(5), pages 1109-1120.
    9. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    10. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    11. Evseev, Efim G. & Kudish, Avraham I., 2009. "An assessment of a revised Olmo et al. model to predict solar global radiation on a tilted surface at Beer Sheva, Israel," Renewable Energy, Elsevier, vol. 34(1), pages 112-119.
    12. Soler, A & Gopinathan, K.K, 2001. "Analysis of zenith luminance data for all sky conditions," Renewable Energy, Elsevier, vol. 24(2), pages 185-196.
    13. Pinheiro Neto, Daywes & Domingues, Elder Geraldo & Coimbra, António Paulo & de Almeida, Aníbal Traça & Alves, Aylton José & Calixto, Wesley Pacheco, 2017. "Portfolio optimization of renewable energy assets: Hydro, wind, and photovoltaic energy in the regulated market in Brazil," Energy Economics, Elsevier, vol. 64(C), pages 238-250.
    14. Soler, A & Gopinathan, K.K & Claros, S.T, 2001. "A study on zenith luminance on Madrid overcast skies," Renewable Energy, Elsevier, vol. 23(1), pages 49-55.
    15. Panagiotis Moraitis & Bala Bhavya Kausika & Nick Nortier & Wilfried Van Sark, 2018. "Urban Environment and Solar PV Performance: The Case of the Netherlands," Energies, MDPI, vol. 11(6), pages 1-14, May.
    16. García, Ignacio & de Blas, Marian & Hernández, Begoña & Sáenz, Carlos & Torres, José Luis, 2021. "Diffuse irradiance on tilted planes in urban environments: Evaluation of models modified with sky and circumsolar view factors," Renewable Energy, Elsevier, vol. 180(C), pages 1194-1209.
    17. Housmans, Caroline & Ipe, Alessandro & Bertrand, Cédric, 2017. "Tilt to horizontal global solar irradiance conversion: An evaluation at high tilt angles and different orientations," Renewable Energy, Elsevier, vol. 113(C), pages 1529-1538.
    18. Bertrand, Cédric & Housmans, Caroline & Leloux, Jonathan & Journée, Michel, 2018. "Solar irradiation from the energy production of residential PV systems," Renewable Energy, Elsevier, vol. 125(C), pages 306-318.
    19. Escrig, H. & Batlles, F.J. & Alonso, J. & Baena, F.M. & Bosch, J.L. & Salbidegoitia, I.B. & Burgaleta, J.I., 2013. "Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast," Energy, Elsevier, vol. 55(C), pages 853-859.
    20. Salazar, Germán A. & Hernández, Alejandro L. & Saravia, Luis R., 2010. "Practical models to estimate horizontal irradiance in clear sky conditions: Preliminary results," Renewable Energy, Elsevier, vol. 35(11), pages 2452-2460.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:27:y:2002:i:10:p:975-986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.