IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v23y2001i1p49-55.html
   My bibliography  Save this article

A study on zenith luminance on Madrid overcast skies

Author

Listed:
  • Soler, A
  • Gopinathan, K.K
  • Claros, S.T

Abstract

The zenith luminance has been measured at Madrid for skies with a cloud cover of 7–8 oktas and experimental mean 15-min values of Lz have been obtained. Among the most accurate fits to the data, a 2nd degree polynomial for Lz against tan(α) is the most simple. When only data for a cloud cover of 8 oktas are used a similar fit is obtained, but for a smaller coefficient of correlation, due to the smaller amount of data.

Suggested Citation

  • Soler, A & Gopinathan, K.K & Claros, S.T, 2001. "A study on zenith luminance on Madrid overcast skies," Renewable Energy, Elsevier, vol. 23(1), pages 49-55.
  • Handle: RePEc:eee:renene:v:23:y:2001:i:1:p:49-55
    DOI: 10.1016/S0960-1481(00)00158-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148100001580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(00)00158-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robledo, Luis & soler, Alfonso, 1998. "Modelling irradiance on inclined planes with an anisotropic model," Energy, Elsevier, vol. 23(3), pages 193-201.
    2. Robledo, L & Soler, A, 2000. "Estimation of direct illuminance on a horizontal surface for clear and intermediate skies," Renewable Energy, Elsevier, vol. 19(1), pages 55-60.
    3. Soler, A. & Robledo, L., 2000. "Global luminous efficacies on vertical surfaces for all sky types," Renewable Energy, Elsevier, vol. 19(1), pages 61-64.
    4. Robledo, Luis & Soler, Alfonso, 2000. "Luminous efficacy of direct solar radiation for clear skies," Energy, Elsevier, vol. 25(8), pages 689-701.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Rosa, A. & Ferraro, V. & Kaliakatsos, D. & Marinelli, V., 2010. "Calculating indoor natural illuminance in overcast sky conditions," Applied Energy, Elsevier, vol. 87(3), pages 806-813, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soler, A & Gopinathan, K.K, 2001. "Analysis of zenith luminance data for all sky conditions," Renewable Energy, Elsevier, vol. 24(2), pages 185-196.
    2. Robledo, Luis & Soler, Alfonso, 2000. "Luminous efficacy of direct solar radiation for clear skies," Energy, Elsevier, vol. 25(8), pages 689-701.
    3. Robledo, L. & Soler, A., 2002. "A simple clear skies model for the luminous efficacy of diffuse solar radiation on inclined surfaces," Renewable Energy, Elsevier, vol. 26(2), pages 169-176.
    4. Janjai, S & Jantarach, T & Laksanaboonsong, J, 2003. "A model for calculating global illuminance from satellite data," Renewable Energy, Elsevier, vol. 28(15), pages 2355-2365.
    5. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    6. Robledo, Luis & Soler, Alfonso, 2001. "Luminous efficacy of direct solar radiation for all sky types," Energy, Elsevier, vol. 26(7), pages 669-677.
    7. Janjai, S. & Prathumsit, J. & Buntoung, S. & Wattan, R. & Pattarapanitchai, S. & Masiri, I., 2014. "Modeling the luminous efficacy of direct and diffuse solar radiation using information on cloud, aerosol and water vapor in the tropics," Renewable Energy, Elsevier, vol. 66(C), pages 111-117.
    8. Janjai, S. & Sricharoen, K. & Pattarapanitchai, S., 2011. "Semi-empirical models for the estimation of clear sky solar global and direct normal irradiances in the tropics," Applied Energy, Elsevier, vol. 88(12), pages 4749-4755.
    9. Forero, N.L. & Caicedo, L.M. & Gordillo, G., 2007. "Correlation of global solar radiation values estimated and measured on an inclined surface for clear days in Bogotá," Renewable Energy, Elsevier, vol. 32(15), pages 2590-2602.
    10. Cheng, C.L. & Chan, C.Y. & Chen, C.L., 2005. "Empirical approach to BIPV evaluation of solar irradiation for building applications," Renewable Energy, Elsevier, vol. 30(7), pages 1055-1074.
    11. Bandara, Kanchana & Varpe, Øystein & Ji, Rubao & Eiane, Ketil, 2018. "A high-resolution modeling study on diel and seasonal vertical migrations of high-latitude copepods," Ecological Modelling, Elsevier, vol. 368(C), pages 357-376.
    12. Li, Danny H.W., 2010. "A review of daylight illuminance determinations and energy implications," Applied Energy, Elsevier, vol. 87(7), pages 2109-2118, July.
    13. Cheng, C.L. & Chan, C.Y. & Chen, C.L., 2006. "An empirical approach to estimating monthly radiation on south-facing tilted planes for building application," Energy, Elsevier, vol. 31(14), pages 2940-2957.
    14. Robledo, L & Soler, A, 2000. "Estimation of direct illuminance on a horizontal surface for clear and intermediate skies," Renewable Energy, Elsevier, vol. 19(1), pages 55-60.
    15. De Rosa, A. & Ferraro, V. & Kaliakatsos, D. & Marinelli, V., 2008. "Calculating diffuse illuminance on vertical surfaces in different sky conditions," Energy, Elsevier, vol. 33(11), pages 1703-1710.
    16. Barbón, A. & Sánchez-Rodríguez, J.A. & Bayón, L. & Barbón, N., 2018. "Development of a fiber daylighting system based on a small scale linear Fresnel reflector: Theoretical elements," Applied Energy, Elsevier, vol. 212(C), pages 733-745.
    17. Notton, Gilles & Paoli, Christophe & Ivanova, Liliana & Vasileva, Siyana & Nivet, Marie Laure, 2013. "Neural network approach to estimate 10-min solar global irradiation values on tilted planes," Renewable Energy, Elsevier, vol. 50(C), pages 576-584.
    18. Hsu-Yung Cheng & Chih-Chang Yu & Kuo-Chang Hsu & Chi-Chang Chan & Mei-Hui Tseng & Chih-Lung Lin, 2019. "Estimating Solar Irradiance on Tilted Surface with Arbitrary Orientations and Tilt Angles," Energies, MDPI, vol. 12(8), pages 1-14, April.
    19. Antonanzas-Torres, F. & Urraca, R. & Polo, J. & Perpiñán-Lamigueiro, O. & Escobar, R., 2019. "Clear sky solar irradiance models: A review of seventy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 374-387.
    20. Grażyna Frydrychowicz-Jastrzębska & Artur Bugała, 2015. "Modeling the Distribution of Solar Radiation on a Two-Axis Tracking Plane for Photovoltaic Conversion," Energies, MDPI, vol. 8(2), pages 1-17, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:23:y:2001:i:1:p:49-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.