IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v275y2023ics0360544223007582.html
   My bibliography  Save this article

Comparison of the centralized and decentralized environmentally constrained economic dispatch methods of coal-fired generators: A case study for South Korea

Author

Listed:
  • Shin, Hansol
  • Kim, Wook

Abstract

Since the climate crisis, global concern about greenhouse gas emissions has increased. Many countries have set nationally determined contributions to limit global temperature rise. In the electricity market, the need for environmentally constrained economic dispatch has emerged to directly reduce greenhouse gas. Environmental shutdown is one method of addressing annual environmentally constrained economic dispatch by scheduling shutdowns for coal-fired generators. Environmental shutdown can be categorized into two methods by decision-makers. In the centralized method, the system operator sets the shutdown schedules for all coal-fired generators. In the decentralized method, each generation company makes the shutdown schedules for its coal-fired generators to maximize profit. The decentralized method is modeled as bi-level optimization because the market price is related to profit and depends on the shutdown schedule. In this study, the bi-level profit-maximizing model is replaced by linear single-level optimization using a primal-dual approach. Furthermore, in the competitive market, the shutdown schedule of one company mutually affects that of competitors, so the Nash equilibrium is found as the final solution. These methods are applied in the Korean electricity market. Consequently, the decentralized method for greenhouse gas reduction increases the market price and decreases the system reliability compared to the centralized method.

Suggested Citation

  • Shin, Hansol & Kim, Wook, 2023. "Comparison of the centralized and decentralized environmentally constrained economic dispatch methods of coal-fired generators: A case study for South Korea," Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223007582
    DOI: 10.1016/j.energy.2023.127364
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223007582
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arul, R. & Velusami, S. & Ravi, G., 2015. "A new algorithm for combined dynamic economic emission dispatch with security constraints," Energy, Elsevier, vol. 79(C), pages 496-511.
    2. Rego, Erik Eduardo & Costa, Oswaldo L.V. & Ribeiro, Celma de Oliveira & Lima Filho, Roberto Ivo da R. & Takada, Hellinton & Stern, Julio, 2020. "The trade-off between demand growth and renewables: A multiperiod electricity planning model under CO2 emission constraints," Energy, Elsevier, vol. 213(C).
    3. Yu, Zhongjue & Geng, Yong & Calzadilla, Alvaro & Bleischwitz, Raimund, 2022. "China's unconventional carbon emissions trading market: The impact of a rate-based cap in the power generation sector," Energy, Elsevier, vol. 255(C).
    4. Lin, Yashen & Johnson, Jeremiah X. & Mathieu, Johanna L., 2016. "Emissions impacts of using energy storage for power system reserves," Applied Energy, Elsevier, vol. 168(C), pages 444-456.
    5. Chen, Fung-Fei & Chou, Seng-Cho & Lu, Tai-Ken, 2013. "Scenario analysis of the new energy policy for Taiwan's electricity sector until 2025," Energy Policy, Elsevier, vol. 61(C), pages 162-171.
    6. Zhou, Wenji & Hagos, Dejene Assefa & Stikbakke, Sverre & Huang, Lizhen & Cheng, Xu & Onstein, Erling, 2022. "Assessment of the impacts of different policy instruments on achieving the deep decarbonization targets of island energy systems in Norway – The case of Hinnøya," Energy, Elsevier, vol. 246(C).
    7. Shin, Hansol & Kim, Tae Hyun & Kim, Hyoungtae & Lee, Sungwoo & Kim, Wook, 2019. "Environmental shutdown of coal-fired generators for greenhouse gas reduction: A case study of South Korea," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    9. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    10. Lim-Wavde, Kustini & Zhai, Haibo & Kauffman, Robert J. & Rubin, Edward S., 2018. "Assessing carbon pollution standards: Electric power generation pathways and their water impacts," Energy Policy, Elsevier, vol. 120(C), pages 714-733.
    11. Masoumzadeh, Amin & Alpcan, Tansu & Nekouei, Ehsan, 2020. "Designing tax and subsidy incentives towards a green and reliable electricity market," Energy, Elsevier, vol. 195(C).
    12. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun & Wu, Jiahui & Fan, Xiaochao & Xu, Qidan, 2020. "Dynamic environmental economic dispatch of hybrid renewable energy systems based on tradable green certificates," Energy, Elsevier, vol. 193(C).
    13. Zhang, Le & Khishe, Mohammad & Mohammadi, Mokhtar & Mohammed, Adil Hussein, 2022. "Environmental economic dispatch optimization using niching penalized chimp algorithm," Energy, Elsevier, vol. 261(PA).
    14. Shao, Changzheng & Ding, Yi & Wang, Jianhui, 2019. "A low-carbon economic dispatch model incorporated with consumption-side emission penalty scheme," Applied Energy, Elsevier, vol. 238(C), pages 1084-1092.
    15. de Sisternes, Fernando J. & Jenkins, Jesse D. & Botterud, Audun, 2016. "The value of energy storage in decarbonizing the electricity sector," Applied Energy, Elsevier, vol. 175(C), pages 368-379.
    16. Ahmed, Ijaz & Rehan, Muhammad & Basit, Abdul & Malik, Saddam Hussain & Alvi, Um-E-Habiba & Hong, Keum-Shik, 2022. "Multi-area economic emission dispatch for large-scale multi-fueled power plants contemplating inter-connected grid tie-lines power flow limitations," Energy, Elsevier, vol. 261(PB).
    17. Amigo, Pía & Cea-Echenique, Sebastián & Feijoo, Felipe, 2021. "A two stage cap-and-trade model with allowance re-trading and capacity investment: The case of the Chilean NDC targets," Energy, Elsevier, vol. 224(C).
    18. Kim, Wook & Chattopadhyay, Deb & Park, Jong-bae, 2010. "Impact of carbon cost on wholesale electricity price: A note on price pass-through issues," Energy, Elsevier, vol. 35(8), pages 3441-3448.
    19. Koltsaklis, Nikolaos E. & Georgiadis, Michael C., 2015. "A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints," Applied Energy, Elsevier, vol. 158(C), pages 310-331.
    20. Mazidi, Peyman & Tohidi, Yaser & Ramos, Andres & Sanz-Bobi, Miguel A., 2018. "Profit-maximization generation maintenance scheduling through bi-level programming," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1045-1057.
    21. Huang, Yuqing & Lan, Hai & Hong, Ying-Yi & Wen, Shuli & Yin, He, 2019. "Optimal generation scheduling for a deep-water semi-submersible drilling platform with uncertain renewable power generation and loads," Energy, Elsevier, vol. 181(C), pages 897-907.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shin, Hansol & Kim, Tae Hyun & Kim, Hyoungtae & Lee, Sungwoo & Kim, Wook, 2019. "Environmental shutdown of coal-fired generators for greenhouse gas reduction: A case study of South Korea," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Hong, Ying-Yi & Apolinario, Gerard Francesco DG. & Chung, Chen-Nien & Lu, Tai-Ken & Chu, Chia-Chi, 2020. "Effect of Taiwan's energy policy on unit commitment in 2025," Applied Energy, Elsevier, vol. 277(C).
    3. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. De Vivero-Serrano, Gustavo & Bruninx, Kenneth & Delarue, Erik, 2019. "Implications of bid structures on the offering strategies of merchant energy storage systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Zhou, Xu & Ma, Zhongjing & Zou, Suli & Zhang, Jinhui, 2022. "Consensus-based distributed economic dispatch for Multi Micro Energy Grid systems under coupled carbon emissions," Applied Energy, Elsevier, vol. 324(C).
    6. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    7. Al-Bahrani, Loau Tawfak & Horan, Ben & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Dynamic economic emission dispatch with load dema nd management for the load demand of electric vehicles during crest shaving and valley filling in smart cities environment," Energy, Elsevier, vol. 195(C).
    8. Jun Zhao & Xiaonan Wang & Jinsheng Chu, 2022. "The Strategies for Increasing Grid-Integrated Share of Renewable Energy with Energy Storage and Existing Coal Fired Power Generation in China," Energies, MDPI, vol. 15(13), pages 1-18, June.
    9. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm," Applied Energy, Elsevier, vol. 232(C), pages 212-228.
    10. Flores-Quiroz, Angela & Strunz, Kai, 2021. "A distributed computing framework for multi-stage stochastic planning of renewable power systems with energy storage as flexibility option," Applied Energy, Elsevier, vol. 291(C).
    11. Das, Choton K. & Bass, Octavian & Mahmoud, Thair S. & Kothapalli, Ganesh & Mousavi, Navid & Habibi, Daryoush & Masoum, Mohammad A.S., 2019. "Optimal allocation of distributed energy storage systems to improve performance and power quality of distribution networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Zhang, Xiaoshun & Chen, Yixuan & Yu, Tao & Yang, Bo & Qu, Kaiping & Mao, Senmao, 2017. "Equilibrium-inspired multiagent optimizer with extreme transfer learning for decentralized optimal carbon-energy combined-flow of large-scale power systems," Applied Energy, Elsevier, vol. 189(C), pages 157-176.
    13. Hailin Mu & Zhewen Pei & Hongye Wang & Nan Li & Ye Duan, 2022. "Optimal Strategy for Low-Carbon Development of Power Industry in Northeast China Considering the ‘Dual Carbon’ Goal," Energies, MDPI, vol. 15(17), pages 1-22, September.
    14. Pandžić, H. & Dvorkin, Y. & Carrión, M., 2018. "Investments in merchant energy storage: Trading-off between energy and reserve markets," Applied Energy, Elsevier, vol. 230(C), pages 277-286.
    15. Jingliang Jin & Qinglan Wen & Xianyue Zhang & Siqi Cheng & Xiaojun Guo, 2021. "Economic Emission Dispatch for Wind Power Integrated System with Carbon Trading Mechanism," Energies, MDPI, vol. 14(7), pages 1-17, March.
    16. de Chalendar, Jacques A. & Benson, Sally M., 2021. "A physics-informed data reconciliation framework for real-time electricity and emissions tracking," Applied Energy, Elsevier, vol. 304(C).
    17. Carvalho, Margarida & Lodi, Andrea, 2023. "A theoretical and computational equilibria analysis of a multi-player kidney exchange program," European Journal of Operational Research, Elsevier, vol. 305(1), pages 373-385.
    18. Andreas Lanz & Gregor Reich & Ole Wilms, 2022. "Adaptive grids for the estimation of dynamic models," Quantitative Marketing and Economics (QME), Springer, vol. 20(2), pages 179-238, June.
    19. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    20. Shi, Yi & Deng, Yawen & Wang, Guoan & Xu, Jiuping, 2020. "Stackelberg equilibrium-based eco-economic approach for sustainable development of kitchen waste disposal with subsidy policy: A case study from China," Energy, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223007582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.