IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4699-d848671.html
   My bibliography  Save this article

The Strategies for Increasing Grid-Integrated Share of Renewable Energy with Energy Storage and Existing Coal Fired Power Generation in China

Author

Listed:
  • Jun Zhao

    (School of Humanities and Social Sciences, North China Electric Power University, Beijing 102206, China)

  • Xiaonan Wang

    (School of Humanities and Social Sciences, North China Electric Power University, Beijing 102206, China)

  • Jinsheng Chu

    (CGN (China General Nuclear Power Corporation) Wind Energy Limited, Beijing 100070, China)

Abstract

The growing share of renewable energies needs more flexible services to balance their intermittency and variance. The existing coal fired units and electrical energy storage (EES) systems may play an important role in delivering flexible services. The value of their flexibility services, along with the value of renewable energies, has to be analyzed from the perspective of the power system, in which the capacity costs and operation costs of renewable energy power units, EES systems, and thermal power generation units have to be taken into consideration. An optimal model is built to analyze the renewable energy integration and the flexibility services delivered by the EES systems and thermal power units in a power system. Taking the existing thermal power units and EES systems in North China Power Grid as an instance, the overall cost of the grid is examined for the penetration of renewable energies and flexible service provision. The results show that the growing shares of renewable energies are affected by their capacity credits and flexibility sources in the grid, and that the potential of thermal power units to provide flexible services will be reduced due to the replacement of renewable energies for thermal power generation. The results also indicate that the thermal units may be dispatched to have priority to delivering flexible services for the renewable energy integration, and that the curtailment of renewable energies may be regarded as one type of flexible service. According to these results, policy and strategy recommendations are put forward to weigh the role of existing coal-fired units and EES systems in providing flexible services, and to improve their compensation mechanism and their coordination.

Suggested Citation

  • Jun Zhao & Xiaonan Wang & Jinsheng Chu, 2022. "The Strategies for Increasing Grid-Integrated Share of Renewable Energy with Energy Storage and Existing Coal Fired Power Generation in China," Energies, MDPI, vol. 15(13), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4699-:d:848671
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4699/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4699/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sardi, Junainah & Mithulananthan, N. & Gallagher, M. & Hung, Duong Quoc, 2017. "Multiple community energy storage planning in distribution networks using a cost-benefit analysis," Applied Energy, Elsevier, vol. 190(C), pages 453-463.
    2. Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.
    3. William A. Braff & Joshua M. Mueller & Jessika E. Trancik, 2016. "Value of storage technologies for wind and solar energy," Nature Climate Change, Nature, vol. 6(10), pages 964-969, October.
    4. Locatelli, Giorgio & Palerma, Emanuele & Mancini, Mauro, 2015. "Assessing the economics of large Energy Storage Plants with an optimisation methodology," Energy, Elsevier, vol. 83(C), pages 15-28.
    5. Lin, Yashen & Johnson, Jeremiah X. & Mathieu, Johanna L., 2016. "Emissions impacts of using energy storage for power system reserves," Applied Energy, Elsevier, vol. 168(C), pages 444-456.
    6. Schill, Wolf-Peter, 2020. "Electricity Storage and the Renewable Energy Transition," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 4(10), pages 2059-2064.
    7. Xinyu Chen & Hongcai Zhang & Zhiwei Xu & Chris P. Nielsen & Michael B. McElroy & Jiajun Lv, 2018. "Impacts of fleet types and charging modes for electric vehicles on emissions under different penetrations of wind power," Nature Energy, Nature, vol. 3(5), pages 413-421, May.
    8. de Sisternes, Fernando J. & Jenkins, Jesse D. & Botterud, Audun, 2016. "The value of energy storage in decarbonizing the electricity sector," Applied Energy, Elsevier, vol. 175(C), pages 368-379.
    9. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, Georgios, 2016. "The value of arbitrage for energy storage: Evidence from European electricity markets," Applied Energy, Elsevier, vol. 184(C), pages 971-986.
    10. Walter Gil-González & Oscar Danilo Montoya & Arul Rajagopalan & Luis Fernando Grisales-Noreña & Jesus C. Hernández, 2020. "Optimal Selection and Location of Fixed-Step Capacitor Banks in Distribution Networks Using a Discrete Version of the Vortex Search Algorithm," Energies, MDPI, vol. 13(18), pages 1-21, September.
    11. Arciniegas, Laura M. & Hittinger, Eric, 2018. "Tradeoffs between revenue and emissions in energy storage operation," Energy, Elsevier, vol. 143(C), pages 1-11.
    12. Zhang, Ning & Hu, Zhaoguang & Shen, Bo & Dang, Shuping & Zhang, Jian & Zhou, Yuhui, 2016. "A source–grid–load coordinated power planning model considering the integration of wind power generation," Applied Energy, Elsevier, vol. 168(C), pages 13-24.
    13. Jun Zhao & Bo Shen, 2019. "The Strategies for Improving Energy Efficiency of Power System with Increasing Share of Wind Power in China," Energies, MDPI, vol. 12(12), pages 1-22, June.
    14. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    15. Xu, Tingting & Gao, Weijun & Qian, Fanyue & Li, Yanxue, 2022. "The implementation limitation of variable renewable energies and its impacts on the public power grid," Energy, Elsevier, vol. 239(PA).
    16. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    17. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saboori, Hedayat & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh & Dehghan, Shahab, 2017. "Energy storage planning in electric power distribution networks – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1108-1121.
    2. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm," Applied Energy, Elsevier, vol. 232(C), pages 212-228.
    3. Das, Choton K. & Bass, Octavian & Mahmoud, Thair S. & Kothapalli, Ganesh & Mousavi, Navid & Habibi, Daryoush & Masoum, Mohammad A.S., 2019. "Optimal allocation of distributed energy storage systems to improve performance and power quality of distribution networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    5. Bucciarelli, Martina & Paoletti, Simone & Vicino, Antonio, 2018. "Optimal sizing of energy storage systems under uncertain demand and generation," Applied Energy, Elsevier, vol. 225(C), pages 611-621.
    6. Parra, David & Mauger, Romain, 2022. "A new dawn for energy storage: An interdisciplinary legal and techno-economic analysis of the new EU legal framework," Energy Policy, Elsevier, vol. 171(C).
    7. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    8. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Sidhu, Arjan S. & Pollitt, Michael G. & Anaya, Karim L., 2018. "A social cost benefit analysis of grid-scale electrical energy storage projects: A case study," Applied Energy, Elsevier, vol. 212(C), pages 881-894.
    10. Mallapragada, Dharik S. & Sepulveda, Nestor A. & Jenkins, Jesse D., 2020. "Long-run system value of battery energy storage in future grids with increasing wind and solar generation," Applied Energy, Elsevier, vol. 275(C).
    11. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Pusceddu, Elian & Zakeri, Behnam & Castagneto Gissey, Giorgio, 2021. "Synergies between energy arbitrage and fast frequency response for battery energy storage systems," Applied Energy, Elsevier, vol. 283(C).
    13. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    14. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Kapila, Sahil & Oni, Abayomi Olufemi & Kumar, Amit, 2017. "The development of techno-economic models for large-scale energy storage systems," Energy, Elsevier, vol. 140(P1), pages 656-672.
    16. Mahdavi, Sajad & Hemmati, Reza & Jirdehi, Mehdi Ahmadi, 2018. "Two-level planning for coordination of energy storage systems and wind-solar-diesel units in active distribution networks," Energy, Elsevier, vol. 151(C), pages 954-965.
    17. Chowdhury, Jahedul Islam & Balta-Ozkan, Nazmiye & Goglio, Pietro & Hu, Yukun & Varga, Liz & McCabe, Leah, 2020. "Techno-environmental analysis of battery storage for grid level energy services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    18. Flores-Quiroz, Angela & Strunz, Kai, 2021. "A distributed computing framework for multi-stage stochastic planning of renewable power systems with energy storage as flexibility option," Applied Energy, Elsevier, vol. 291(C).
    19. Akram, Umer & Nadarajah, Mithulananthan & Shah, Rakibuzzaman & Milano, Federico, 2020. "A review on rapid responsive energy storage technologies for frequency regulation in modern power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    20. Panda, Deepak Kumar & Das, Saptarshi, 2021. "Economic operational analytics for energy storage placement at different grid locations and contingency scenarios with stochastic wind profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4699-:d:848671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.