IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v273y2023ics0360544223005364.html
   My bibliography  Save this article

Optimal planning of Electricity–Hydrogen hybrid energy storage system considering demand response in active distribution network

Author

Listed:
  • Li, Jiale
  • Yang, Bo
  • Huang, Jianxiang
  • Guo, Zhengxun
  • Wang, Jingbo
  • Zhang, Rui
  • Hu, Yuanweiji
  • Shu, Hongchun
  • Chen, Yixuan
  • Yan, Yunfeng

Abstract

With the increasing penetration of distributed generation (DG) based on renewable energy in active distribution networks (ADN), net load and voltage fluctuation has greatly worsened. Demand response (DR) load and energy storage systems (ESSs) are regarded as significant resources of ADN, owing to their critical role in increasing stability. This study establishes a novel planning bi-level programming model (including an upper-level model and a lower-level model) of the electricity–hydrogen hybrid (EHH)-ESS considering the DR load to enhance ADN stability. The upper-level model determines the optimal time-of-use (ToU) price formulation strategy to minimise the net load fluctuation and maximise user electricity purchasing cost satisfaction and electricity consumption. The lower-level model considers the life cycle cost (LCC) of the EHH-ESS, voltage fluctuation, and net load fluctuation under DR as objectives to optimise the locations, capacities, and charging/discharging power of the EHH-ESS. A multi-objective mayfly algorithm (MOMA) based on improved grey-target decision-making (IGTDM) was developed to optimise the aforementioned models. The validity and feasibility of the proposed models and methods were comprehensively validated based on extended IEEE 33 and IEEE 66 bus systems. Simulation results based on MOMA-IGTDM under the extended IEEE 66 bus system demonstrate that compared with only accessing EHH-ESS, although LCC is increased by 2.79% (from $ 1.0217 e+3/to $ 1.0502e+3/) by considering the DR load and configuring EHH-ESS, the net load fluctuation and voltage fluctuation can be reduced by 20.88% (from 5.7754 MW to 4.5697 MW) and 27.40% (from 0.2606 p.u. to 0.1892 p.u.), respectively. It is verified that the configuration of the EHH-ESS and DR can significantly improve the stability of the ADN.

Suggested Citation

  • Li, Jiale & Yang, Bo & Huang, Jianxiang & Guo, Zhengxun & Wang, Jingbo & Zhang, Rui & Hu, Yuanweiji & Shu, Hongchun & Chen, Yixuan & Yan, Yunfeng, 2023. "Optimal planning of Electricity–Hydrogen hybrid energy storage system considering demand response in active distribution network," Energy, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223005364
    DOI: 10.1016/j.energy.2023.127142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223005364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    3. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Li, Hangxin & Wang, Shengwei, 2022. "Two-time-scale coordinated optimal control of building energy systems for demand response considering forecast uncertainties," Energy, Elsevier, vol. 253(C).
    5. Yang, Zhichun & Tian, Hao & Min, Huaidong & Yang, Fan & Hu, Wei & Su, Lei & SaeidNahaei, Sanam, 2023. "Optimal microgrid programming based on an energy storage system, price-based demand response, and distributed renewable energy resources," Utilities Policy, Elsevier, vol. 80(C).
    6. Shi, Zhongtuo & Yao, Wei & Li, Zhouping & Zeng, Lingkang & Zhao, Yifan & Zhang, Runfeng & Tang, Yong & Wen, Jinyu, 2020. "Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions," Applied Energy, Elsevier, vol. 278(C).
    7. Chen, Jian & Yao, Wei & Zhang, Chuan-Ke & Ren, Yaxing & Jiang, Lin, 2019. "Design of robust MPPT controller for grid-connected PMSG-Based wind turbine via perturbation observation based nonlinear adaptive control," Renewable Energy, Elsevier, vol. 134(C), pages 478-495.
    8. Liu, Jia & Cao, Sunliang & Chen, Xi & Yang, Hongxing & Peng, Jinqing, 2021. "Energy planning of renewable applications in high-rise residential buildings integrating battery and hydrogen vehicle storage," Applied Energy, Elsevier, vol. 281(C).
    9. Yan, Yi & Zhang, Chenghui & Li, Ke & Wang, Zhen, 2018. "An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1151-1166.
    10. He, Yi & Guo, Su & Dong, Peixin & Wang, Chen & Huang, Jing & Zhou, Jianxu, 2022. "Techno-economic comparison of different hybrid energy storage systems for off-grid renewable energy applications based on a novel probabilistic reliability index," Applied Energy, Elsevier, vol. 328(C).
    11. Tingyi He & Shengnan Li & Shuijun Wu & Chuangzhi Li & Biao Xu, 2021. "Biobjective Optimization-Based Frequency Regulation of Power Grids with High-Participated Renewable Energy and Energy Storage Systems," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-16, March.
    12. Yang, Bo & Yu, Tao & Shu, Hongchun & Dong, Jun & Jiang, Lin, 2018. "Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers," Applied Energy, Elsevier, vol. 210(C), pages 711-723.
    13. Lu, Qing & Zhang, Yufeng, 2022. "A multi-objective optimization model considering users' satisfaction and multi-type demand response in dynamic electricity price," Energy, Elsevier, vol. 240(C).
    14. Saber, Hossein & Moeini-Aghtaie, Moein & Ehsan, Mehdi, 2018. "Developing a multi-objective framework for expansion planning studies of distributed energy storage systems (DESSs)," Energy, Elsevier, vol. 157(C), pages 1079-1089.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Yi & Ding, Tao & Chang, Xinyue & Jia, Wenhao & Xue, Yixun, 2024. "A distributed multi-objective optimization method for scheduling of integrated electricity and hydrogen systems," Applied Energy, Elsevier, vol. 355(C).
    2. Qinqin Xia & Yao Zou & Qianggang Wang, 2024. "Optimal Capacity Planning of Green Electricity-Based Industrial Electricity-Hydrogen Multi-Energy System Considering Variable Unit Cost Sequence," Sustainability, MDPI, vol. 16(9), pages 1-20, April.
    3. Shen, Weijie & Zeng, Bo & Zeng, Ming, 2023. "Multi-timescale rolling optimization dispatch method for integrated energy system with hybrid energy storage system," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huazhen Cao & Chong Gao & Xuan He & Yang Li & Tao Yu, 2020. "Multi-Agent Cooperation Based Reduced-Dimension Q(λ) Learning for Optimal Carbon-Energy Combined-Flow," Energies, MDPI, vol. 13(18), pages 1-22, September.
    2. Yang, Bo & Wang, Junting & Zhang, Xiaoshun & Yu, Lei & Shu, Hongchun & Yu, Tao & Sun, Liming, 2020. "Control of SMES systems in distribution networks with renewable energy integration: A perturbation estimation approach," Energy, Elsevier, vol. 202(C).
    3. Yang, Bo & Zhu, Tianjiao & Zhang, Xiaoshun & Wang, Jingbo & Shu, Hongchun & Li, Shengnan & He, Tingyi & Yang, Lei & Yu, Tao, 2020. "Design and implementation of Battery/SMES hybrid energy storage systems used in electric vehicles: A nonlinear robust fractional-order control approach," Energy, Elsevier, vol. 191(C).
    4. Zhang, Xiaoshun & Tan, Tian & Yang, Bo & Wang, Jingbo & Li, Shengnan & He, Tingyi & Yang, Lei & Yu, Tao & Sun, Liming, 2020. "Greedy search based data-driven algorithm of centralized thermoelectric generation system under non-uniform temperature distribution," Applied Energy, Elsevier, vol. 260(C).
    5. Yang, Bo & Wang, Jingbo & Sang, Yiyan & Yu, Lei & Shu, Hongchun & Li, Shengnan & He, Tingyi & Yang, Lei & Zhang, Xiaoshun & Yu, Tao, 2019. "Applications of supercapacitor energy storage systems in microgrid with distributed generators via passive fractional-order sliding-mode control," Energy, Elsevier, vol. 187(C).
    6. Yan, Cai & Yao, Wei & Wen, Jianfeng & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu, 2020. "Optimal design of probabilistic robust damping controllers to suppress multiband oscillations of power systems integrated with wind farm," Renewable Energy, Elsevier, vol. 158(C), pages 75-90.
    7. Zhang, Xiaoshun & Li, Shengnan & He, Tingyi & Yang, Bo & Yu, Tao & Li, Haofei & Jiang, Lin & Sun, Liming, 2019. "Memetic reinforcement learning based maximum power point tracking design for PV systems under partial shading condition," Energy, Elsevier, vol. 174(C), pages 1079-1090.
    8. Wang, Tonghe & Hua, Haochen & Shi, Tianying & Wang, Rui & Sun, Yizhong & Naidoo, Pathmanathan, 2024. "A bi-level dispatch optimization of multi-microgrid considering green electricity consumption willingness under renewable portfolio standard policy," Applied Energy, Elsevier, vol. 356(C).
    9. Wang, Han & Xiang, Youzhen & Liao, Zhenqi & Wang, Xin & Zhang, Xueyan & Huang, Xiangyang & Zhang, Fucang & Feng, Li, 2024. "Integrated assessment of water-nitrogen management for winter oilseed rape production in Northwest China," Agricultural Water Management, Elsevier, vol. 298(C).
    10. Zhang, Meng & Guo, Huan & Sun, Ming & Liu, Sifeng & Forrest, Jeffrey, 2022. "A novel flexible grey multivariable model and its application in forecasting energy consumption in China," Energy, Elsevier, vol. 239(PE).
    11. Lingqin Xia & Guang Chen & Tao Wu & Yu Gao & Ardashir Mohammadzadeh & Ebrahim Ghaderpour, 2022. "Optimal Intelligent Control for Doubly Fed Induction Generators," Mathematics, MDPI, vol. 11(1), pages 1-16, December.
    12. Mao, Anjia & Yu, Tiantian & Ding, Zhaohao & Fang, Sidun & Guo, Jinran & Sheng, Qianqian, 2022. "Optimal scheduling for seaport integrated energy system considering flexible berth allocation," Applied Energy, Elsevier, vol. 308(C).
    13. Mojtaba Nasiri & Saleh Mobayen & Quan Min Zhu, 2019. "Super-Twisting Sliding Mode Control for Gearless PMSG-Based Wind Turbine," Complexity, Hindawi, vol. 2019, pages 1-15, April.
    14. Chen, Xiangxiang & Sun, Zhuang & Kuo, Po-Chih & Aziz, Muhammad, 2024. "Carbon-negative olefins production from biomass and solar energy via direct chemical looping," Energy, Elsevier, vol. 289(C).
    15. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    16. He, Yi & Guo, Su & Zhou, Jianxu & Wu, Feng & Huang, Jing & Pei, Huanjin, 2021. "The many-objective optimal design of renewable energy cogeneration system," Energy, Elsevier, vol. 234(C).
    17. Wang, Lu & Gu, Wei & Wu, Zhi & Qiu, Haifeng & Pan, Guangsheng, 2020. "Non-cooperative game-based multilateral contract transactions in power-heating integrated systems," Applied Energy, Elsevier, vol. 268(C).
    18. Sakalis, George N. & Frangopoulos, Christos A., 2018. "Intertemporal optimization of synthesis, design and operation of integrated energy systems of ships: General method and application on a system with Diesel main engines," Applied Energy, Elsevier, vol. 226(C), pages 991-1008.
    19. Liu, Jia & Yang, Hongxing & Zhou, Yuekuan, 2021. "Peer-to-peer trading optimizations on net-zero energy communities with energy storage of hydrogen and battery vehicles," Applied Energy, Elsevier, vol. 302(C).
    20. Pengcheng Ni & Zhiyuan Ye & Can Cao & Zhimin Guo & Jian Zhao & Xing He, 2023. "Cooperative Game-Based Collaborative Optimal Regulation-Assisted Digital Twins for Wide-Area Distributed Energy," Energies, MDPI, vol. 16(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223005364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.