IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5526492.html
   My bibliography  Save this article

Biobjective Optimization-Based Frequency Regulation of Power Grids with High-Participated Renewable Energy and Energy Storage Systems

Author

Listed:
  • Tingyi He
  • Shengnan Li
  • Shuijun Wu
  • Chuangzhi Li
  • Biao Xu

Abstract

Large-scale renewable energy sources connected to the grid bring new problems and challenges to the automatic generation control (AGC) of the power system. In order to improve the dynamic response performance of AGC, a biobjective of complementary control (BOCC) with high-participation of energy storage resources (ESRs) is established, with the minimization of total power deviation and the minimization of regulation mileage payment. To address this problem, the strength Pareto evolutionary algorithm is employed to quickly acquire a high-quality Pareto front for BOCC. Based on the entropy weight method (EWM), grey target decision-making theory is designed to choose a compromise dispatch scheme that takes both of the operating economy and power quality into account. At last, an extended two-area load frequency control (LFC) model with seven AGC units is taken to verify the effectiveness and the performance of the proposed method.

Suggested Citation

  • Tingyi He & Shengnan Li & Shuijun Wu & Chuangzhi Li & Biao Xu, 2021. "Biobjective Optimization-Based Frequency Regulation of Power Grids with High-Participated Renewable Energy and Energy Storage Systems," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-16, March.
  • Handle: RePEc:hin:jnlmpe:5526492
    DOI: 10.1155/2021/5526492
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5526492.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2021/5526492.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2021/5526492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jiale & Yang, Bo & Huang, Jianxiang & Guo, Zhengxun & Wang, Jingbo & Zhang, Rui & Hu, Yuanweiji & Shu, Hongchun & Chen, Yixuan & Yan, Yunfeng, 2023. "Optimal planning of Electricity–Hydrogen hybrid energy storage system considering demand response in active distribution network," Energy, Elsevier, vol. 273(C).
    2. Pengcheng Ni & Zhiyuan Ye & Can Cao & Zhimin Guo & Jian Zhao & Xing He, 2023. "Cooperative Game-Based Collaborative Optimal Regulation-Assisted Digital Twins for Wide-Area Distributed Energy," Energies, MDPI, vol. 16(6), pages 1-17, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5526492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.