IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipcs0360544222028031.html
   My bibliography  Save this article

Energy, exergy, economic and environmental (4E) analyses of an integrated system based on CH-CAES and electrical boiler for wind power penetration and CHP unit heat-power decoupling in wind enrichment region

Author

Listed:
  • Zhao, Pan
  • Gou, Feifei
  • Xu, Wenpan
  • Shi, Honghui
  • Wang, Jiangfeng

Abstract

To improve the fluctuant renewables penetration level, the electrical energy storage (EES) technology and the flexibility improvement of combined heat and power (CHP) plant via heat-power decoupling are recognized as the two feasible solutions. Previous studies mainly focus on the single technology utilization, the combination of both technologies in one system is not involved. Therefore, an integrated system based on combined heat and compressed air energy storage (CH-CAES) and electrical boiler for wind power penetration and CHP unit heat-power decoupling in wind enrichment region is proposed. In such system, the CHP unit operates in pure condensing mode, and the heat load is mainly met by wind power via electrical boiler. The energy, exergy, economic and environmental (4E) analyses for a representative case are conducted. The results show that the proposed system can enlarge the CHP unit operation flexibility and reduce the wind curtailment. Both the energy and exergy efficiencies are boosted. Furthermore, compared with the conventional system, the levelized cost of electricity (LCOE) and the levelized cost of heat (LCOH) in proposed system decrease by 38.9% and 23.71%, respectively. Moreover, the proposed system can decrease the coal consumption effectively, leading to a remarkable reduced CO2 and SO2 emissions.

Suggested Citation

  • Zhao, Pan & Gou, Feifei & Xu, Wenpan & Shi, Honghui & Wang, Jiangfeng, 2023. "Energy, exergy, economic and environmental (4E) analyses of an integrated system based on CH-CAES and electrical boiler for wind power penetration and CHP unit heat-power decoupling in wind enrichment," Energy, Elsevier, vol. 263(PC).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222028031
    DOI: 10.1016/j.energy.2022.125917
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222028031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garbrecht, Oliver & Bieber, Malte & Kneer, Reinhold, 2017. "Increasing fossil power plant flexibility by integrating molten-salt thermal storage," Energy, Elsevier, vol. 118(C), pages 876-883.
    2. Alami, Abdul Hai & Aokal, Kamilia & Abed, Jehad & Alhemyari, Mohammad, 2017. "Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications," Renewable Energy, Elsevier, vol. 106(C), pages 201-211.
    3. Zhao, Pan & Gou, Feifei & Xu, Wenpan & Wang, Jiangfeng & Dai, Yiping, 2022. "Multi-objective optimization of a renewable power supply system with underwater compressed air energy storage for seawater reverse osmosis under two different operation schemes," Renewable Energy, Elsevier, vol. 181(C), pages 71-90.
    4. Nuytten, Thomas & Claessens, Bert & Paredis, Kristof & Van Bael, Johan & Six, Daan, 2013. "Flexibility of a combined heat and power system with thermal energy storage for district heating," Applied Energy, Elsevier, vol. 104(C), pages 583-591.
    5. Liu, Ming & Wang, Shan & Zhao, Yongliang & Tang, Haiyu & Yan, Junjie, 2019. "Heat–power decoupling technologies for coal-fired CHP plants: Operation flexibility and thermodynamic performance," Energy, Elsevier, vol. 188(C).
    6. Bartnik, Ryszard & Buryn, Zbigniew & Hnydiuk-Stefan, Anna, 2021. "Thermodynamic and economic analysis of effect of heat accumulator volume on the specific cost of heat production in the gas-steam CHP plant," Energy, Elsevier, vol. 230(C).
    7. Rocha, Danilo H.D. & Siqueira, Diana S. & Silva, Rogério J., 2021. "Exergoenvironmental analysis for evaluating coal-fired power plants technologies," Energy, Elsevier, vol. 233(C).
    8. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    9. Abdul Ghani Olabi & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Mohamad Ramadan, 2021. "Critical Review of Flywheel Energy Storage System," Energies, MDPI, vol. 14(8), pages 1-33, April.
    10. Venkataramani, Gayathri & Parankusam, Prasanna & Ramalingam, Velraj & Wang, Jihong, 2016. "A review on compressed air energy storage – A pathway for smart grid and polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 895-907.
    11. Cao, Lihua & Wang, Zhanzhou & Pan, Tongyang & Dong, Enfu & Hu, Pengfei & Liu, Miao & Ma, Tingshan, 2021. "Analysis on wind power accommodation ability and coal consumption of heat–power decoupling technologies for CHP units," Energy, Elsevier, vol. 231(C).
    12. Guo, Zheyu & Zheng, Yanan & Li, Gengyin, 2020. "Power system flexibility quantitative evaluation based on improved universal generating function method: A case study of Zhangjiakou," Energy, Elsevier, vol. 205(C).
    13. Xia, Tian & Li, Yaowang & Zhang, Ning & Kang, Chongqing, 2022. "Role of compressed air energy storage in urban integrated energy systems with increasing wind penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    14. Wang, Haichao & Hua, Pengmin & Wu, Xiaozhou & Zhang, Ruoyu & Granlund, Katja & Li, Ji & Zhu, Yingjie & Lahdelma, Risto & Teppo, Esa & Yu, Li, 2022. "Heat-power decoupling and energy saving of the CHP unit with heat pump based waste heat recovery system," Energy, Elsevier, vol. 250(C).
    15. Wang, Jiawei & You, Shi & Zong, Yi & Træholt, Chresten & Dong, Zhao Yang & Zhou, You, 2019. "Flexibility of combined heat and power plants: A review of technologies and operation strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Cavallo, Alfred, 2007. "Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES)," Energy, Elsevier, vol. 32(2), pages 120-127.
    17. Liu, Ming & Wang, Shan & Yan, Junjie, 2021. "Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm," Energy, Elsevier, vol. 214(C).
    18. Bennett, Jeffrey A. & Simpson, Juliet G. & Qin, Chao & Fittro, Roger & Koenig, Gary M. & Clarens, Andres F. & Loth, Eric, 2021. "Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power," Applied Energy, Elsevier, vol. 303(C).
    19. Zhao, Pan & Wang, Peizi & Xu, Wenpan & Zhang, Shiqiang & Wang, Jiangfeng & Dai, Yiping, 2021. "The survey of the combined heat and compressed air energy storage (CH-CAES) system with dual power levels turbomachinery configuration for wind power peak shaving based spectral analysis," Energy, Elsevier, vol. 215(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Miaomiao & Liu, Ming & Chen, Weixiong & Yan, Junjie, 2023. "Operational flexibility and operation optimization of CHP units supplying electricity and two-pressure steam," Energy, Elsevier, vol. 263(PE).
    2. Cheayb, Mohamad & Marin Gallego, Mylène & Tazerout, Mohand & Poncet, Sébastien, 2022. "A techno-economic analysis of small-scale trigenerative compressed air energy storage system," Energy, Elsevier, vol. 239(PA).
    3. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    4. Zhang, Aibo & Yin, Zhaoyuan & Wu, Zhiying & Xie, Min & Liu, Yiliu & Yu, Haoshui, 2023. "Investigation of the compressed air energy storage (CAES) system utilizing systems-theoretic process analysis (STPA) towards safe and sustainable energy supply," Renewable Energy, Elsevier, vol. 206(C), pages 1075-1085.
    5. Kruk-Gotzman, Sylwia & Ziółkowski, Paweł & Iliev, Iliya & Negreanu, Gabriel-Paul & Badur, Janusz, 2023. "Techno-economic evaluation of combined cycle gas turbine and a diabatic compressed air energy storage integration concept," Energy, Elsevier, vol. 266(C).
    6. Wang, Haichao & Hua, Pengmin & Wu, Xiaozhou & Zhang, Ruoyu & Granlund, Katja & Li, Ji & Zhu, Yingjie & Lahdelma, Risto & Teppo, Esa & Yu, Li, 2022. "Heat-power decoupling and energy saving of the CHP unit with heat pump based waste heat recovery system," Energy, Elsevier, vol. 250(C).
    7. Hou, Guolian & Gong, Linjuan & Hu, Bo & Huang, Ting & Su, Huilin & Huang, Congzhi & Zhou, Guiping & Wang, Shunjiang, 2022. "Flexibility oriented adaptive modeling of combined heat and power plant under various heat-power coupling conditions," Energy, Elsevier, vol. 242(C).
    8. Tawalbeh, Muhammad & Murtaza, Sana Z.M. & Al-Othman, Amani & Alami, Abdul Hai & Singh, Karnail & Olabi, Abdul Ghani, 2022. "Ammonia: A versatile candidate for the use in energy storage systems," Renewable Energy, Elsevier, vol. 194(C), pages 955-977.
    9. Liu, Ming & Ma, Guofeng & Wang, Shan & Wang, Yu & Yan, Junjie, 2021. "Thermo-economic comparison of heat–power decoupling technologies for combined heat and power plants when participating in a power-balancing service in an energy hub," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Bazdar, Elaheh & Sameti, Mohammad & Nasiri, Fuzhan & Haghighat, Fariborz, 2022. "Compressed air energy storage in integrated energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Gao, Shuang & Li, Hailong & Hou, Yichen & Yan, Jinyue, 2023. "Benefits of integrating power-to-heat assets in CHPs," Applied Energy, Elsevier, vol. 335(C).
    12. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    13. Yan Zhang & Quan Lyu & Yang Li & Na Zhang & Lijun Zheng & Haoyan Gong & Hui Sun, 2020. "Research on Down-Regulation Cost of Flexible Combined Heat Power Plants Participating in Real-Time Deep Down-Regulation Market," Energies, MDPI, vol. 13(4), pages 1-17, February.
    14. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    15. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    16. Toufani, Parinaz & Nadar, Emre & Kocaman, Ayse Selin, 2022. "Short-term assessment of pumped hydro energy storage configurations: Up, down, or closed?," Renewable Energy, Elsevier, vol. 201(P1), pages 1086-1095.
    17. Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
    18. Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
    19. Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).
    20. Savolainen, Rebecka & Lahdelma, Risto, 2022. "Optimization of renewable energy for buildings with energy storages and 15-minute power balance," Energy, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222028031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.