IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v257y2022ics036054422201667x.html
   My bibliography  Save this article

Integrated optimization of multi-carrier energy systems: Water-energy nexus case

Author

Listed:
  • Soleimani, Borhan
  • Keihan Asl, Dariush
  • Estakhr, Javad
  • Seifi, Ali Reza

Abstract

This paper focuses on the optimal operation of integrated electrical and water energy networks at the distribution level considering the demand response program. In this manner, the water network with various components including reservoirs, tanks, fixed and variable speed pumps, and control valves is modeled. Newton-Raphson method is adopted to solve the water flow problem. This technique, unlike existing methods, can be applied to any network with any type of topology, whether radial, circular or hybrid. The electrical network is also modeled with the relevant constraints and coupled with the water network to supply the required electrical power. The optimization problem in a practical energy system, including a standard IEEE 33-bus electrical network, and the North Marin water network has been solved by a teaching learning-based optimization algorithm as a parameter-free method. The objective is to minimize the total operation cost. With the participation of the water network in a demand response program, the optimal charging and discharging of tanks, and pumps scheduling has been carried out, which consequently has led to operation cost reduction. In addition, numerical results have proved that the utilization of variable speed pumps can reduce about 7% of the total costs.

Suggested Citation

  • Soleimani, Borhan & Keihan Asl, Dariush & Estakhr, Javad & Seifi, Ali Reza, 2022. "Integrated optimization of multi-carrier energy systems: Water-energy nexus case," Energy, Elsevier, vol. 257(C).
  • Handle: RePEc:eee:energy:v:257:y:2022:i:c:s036054422201667x
    DOI: 10.1016/j.energy.2022.124764
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422201667X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124764?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ioan Sarbu & Emilian Stefan Valea, 2015. "Energy Savings Potential for Pumping Water in District Heating Stations," Sustainability, MDPI, vol. 7(5), pages 1-15, May.
    2. Dashuang Li & Chaoyong Zhang & Xinyu Shao & Wenwen Lin, 2016. "A multi-objective TLBO algorithm for balancing two-sided assembly line with multiple constraints," Journal of Intelligent Manufacturing, Springer, vol. 27(4), pages 725-739, August.
    3. Cheng, Ying & Liu, Mingbo & Chen, Honglin & Yang, Ziwei, 2021. "Optimization of multi-carrier energy system based on new operation mechanism modelling of power-to-gas integrated with CO2-based electrothermal energy storage," Energy, Elsevier, vol. 216(C).
    4. Ayman Alhejji & Alban Kuriqi & Jakub Jurasz & Farag K. Abo-Elyousr, 2021. "Energy Harvesting and Water Saving in Arid Regions via Solar PV Accommodation in Irrigation Canals," Energies, MDPI, vol. 14(9), pages 1-24, May.
    5. Ma, Tengfei & Wu, Junyong & Hao, Liangliang & Lee, Wei-Jen & Yan, Huaguang & Li, Dezhi, 2018. "The optimal structure planning and energy management strategies of smart multi energy systems," Energy, Elsevier, vol. 160(C), pages 122-141.
    6. Tornyeviadzi, Hoese Michel & Owusu-Ansah, Emmanuel & Mohammed, Hadi & Seidu, Razak, 2022. "A systematic framework for dynamic nodal vulnerability assessment of water distribution networks based on multilayer networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Shabanpour-Haghighi, Amin & Seifi, Ali Reza, 2015. "Multi-objective operation management of a multi-carrier energy system," Energy, Elsevier, vol. 88(C), pages 430-442.
    8. Mkireb, Chouaïb & Dembélé, Abel & Jouglet, Antoine & Denoeux, Thierry, 2019. "Robust Optimization of Demand Response Power Bids for Drinking Water Systems," Applied Energy, Elsevier, vol. 238(C), pages 1036-1047.
    9. Almorox, Javier & Voyant, Cyril & Bailek, Nadjem & Kuriqi, Alban & Arnaldo, J.A., 2021. "Total solar irradiance's effect on the performance of empirical models for estimating global solar radiation: An empirical-based review," Energy, Elsevier, vol. 236(C).
    10. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Zafarani, Hamidreza & Taher, Seyed Abbas & Shahidehpour, Mohammad, 2020. "Robust operation of a multicarrier energy system considering EVs and CHP units," Energy, Elsevier, vol. 192(C).
    12. Menke, Ruben & Abraham, Edo & Parpas, Panos & Stoianov, Ivan, 2016. "Demonstrating demand response from water distribution system through pump scheduling," Applied Energy, Elsevier, vol. 170(C), pages 377-387.
    13. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Bejarano, María D. & Garrote, Luis, 2021. "Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Long & Xu, Xiaolin & Sun, Ying & Zhou, Yunjie, 2022. "Carbon emission reduction effects of eco-industrial park policy in China," Energy, Elsevier, vol. 261(PB).
    2. Tian, Xiaoge & Chen, Weiming & Hu, Jinglu, 2023. "Game-theoretic modeling of power supply chain coordination under demand variation in China: A case study of Guangdong Province," Energy, Elsevier, vol. 262(PA).
    3. Pang, Qinghua & Dong, Xianwei & Zhang, Lina & Chiu, Yung-ho, 2023. "Drivers and key pathways of the household energy consumption in the Yangtze river economic belt," Energy, Elsevier, vol. 262(PA).
    4. Huo, Zhihong & Xu, Chang, 2022. "Distributed cooperative automatic generation control and multi-event triggered mechanisms co-design for networked wind-integrated power systems," Renewable Energy, Elsevier, vol. 193(C), pages 41-56.
    5. Shen, Jian-jian & Cheng, Chun-tian & Jia, Ze-bin & Zhang, Yang & Lv, Quan & Cai, Hua-xiang & Wang, Bang-can & Xie, Meng-fei, 2022. "Impacts, challenges and suggestions of the electricity market for hydro-dominated power systems in China," Renewable Energy, Elsevier, vol. 187(C), pages 743-759.
    6. Dzido, Aleksandra & Wołowicz, Marcin & Krawczyk, Piotr, 2022. "Transcritical carbon dioxide cycle as a way to improve the efficiency of a Liquid Air Energy Storage system," Renewable Energy, Elsevier, vol. 196(C), pages 1385-1391.
    7. Jovan, David Jure & Dolanc, Gregor & Pregelj, Boštjan, 2022. "Utilization of excess water accumulation for green hydrogen production in a run-of-river hydropower plant," Renewable Energy, Elsevier, vol. 195(C), pages 780-794.
    8. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. AkbaiZadeh, MohammadReza & Niknam, Taher & Kavousi-Fard, Abdollah, 2021. "Adaptive robust optimization for the energy management of the grid-connected energy hubs based on hybrid meta-heuristic algorithm," Energy, Elsevier, vol. 235(C).
    10. Zhao, Pan & Gou, Feifei & Xu, Wenpan & Wang, Jiangfeng & Dai, Yiping, 2022. "Multi-objective optimization of a renewable power supply system with underwater compressed air energy storage for seawater reverse osmosis under two different operation schemes," Renewable Energy, Elsevier, vol. 181(C), pages 71-90.
    11. Majid, A. & van Zyl, J.E. & Hall, J.W., 2022. "The influence of temporal variability and reservoir management on demand-response in the water sector," Applied Energy, Elsevier, vol. 305(C).
    12. de Jesus, Ábio Xavier Cardoso & Pinheiro Neto, Daywes & Domingues, Elder Geraldo, 2023. "Computational tool for technical-economic analysis of photovoltaic microgeneration in Brazil," Energy, Elsevier, vol. 271(C).
    13. Christina Papadimitriou & Marialaura Di Somma & Chrysanthos Charalambous & Martina Caliano & Valeria Palladino & Andrés Felipe Cortés Borray & Amaia González-Garrido & Nerea Ruiz & Giorgio Graditi, 2023. "A Comprehensive Review of the Design and Operation Optimization of Energy Hubs and Their Interaction with the Markets and External Networks," Energies, MDPI, vol. 16(10), pages 1-46, May.
    14. Murshed, Muntasir & Ozturk, Ilhan, 2023. "Rethinking energy poverty reduction through improving electricity accessibility: A regional analysis on selected African nations," Energy, Elsevier, vol. 267(C).
    15. Emodi, Nnaemeka Vincent & Wade, Belinda & Rekker, Saphira & Greig, Chris, 2022. "A systematic review of barriers to greenfield investment in decarbonisation solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    16. Yang, Bo & Wu, Shaocong & Zhang, Hao & Liu, Bingqiang & Shu, Hongchun & Shan, Jieshan & Ren, Yaxing & Yao, Wei, 2022. "Wave energy converter array layout optimization: A critical and comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Jixiang Yang & Yongming Bian & Meng Yang & Jie Shao & Ao Liang, 2021. "Parameter Matching of Energy Regeneration System for Parallel Hydraulic Hybrid Loader," Energies, MDPI, vol. 14(16), pages 1-26, August.
    18. Migo-Sumagang, Maria Victoria & Tan, Raymond R. & Aviso, Kathleen B., 2023. "A multi-period model for optimizing negative emission technology portfolios with economic and carbon value discount rates," Energy, Elsevier, vol. 275(C).
    19. Agnieszka Operacz, 2021. "Possibility of Hydropower Development: A Simple-to-Use Index," Energies, MDPI, vol. 14(10), pages 1-19, May.
    20. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:257:y:2022:i:c:s036054422201667x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.