IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v255y2022ics0360544222012361.html
   My bibliography  Save this article

Impact of implementing a price-based demand response program on the system reliability in security-constrained unit commitment problem coupled with wind farms in the presence of contingencies

Author

Listed:
  • Mansourshoar, Paria
  • Yazdankhah, Ahmad Sadeghi
  • Vatanpour, Mohsen
  • Mohammadi-Ivatloo, Behnam

Abstract

Large scale penetration of highly intermittent wind energy sources has caused new challenges to the reliable operation of power systems. To address these challenges, demand response program is considered as an efficient solution to manage shift-able loads. In this paper, the impact of demand response on power system reliability has been evaluated by developing a two-stage stochastic security constraint unit commitment that considers both the wind volatility and line outages at the same time. The allocation of ramping products and spinning reserves to cover these uncertainties has also been modeled. wind curtailment and load shedding are considered as alternative strategies, and an optimal exchange between them and the use of spinning reserves and flexible ramping products has been modeled in the objective function. To assess the system reliability, the expected load not served (ELNS) index was evaluated in different cases. The proposed scheme as a mixed-integer linear programming problem was solved by a scenario-based two-stage stochastic programming method. The IEEE test systems 6-bus, modified 24-bus, and 118-bus were examined numerically. The results show that the simultaneous consideration of demand response and flexible ramping product coordinated with wind energy has adequate flexibility to reduce the reliability index and system operational cost.

Suggested Citation

  • Mansourshoar, Paria & Yazdankhah, Ahmad Sadeghi & Vatanpour, Mohsen & Mohammadi-Ivatloo, Behnam, 2022. "Impact of implementing a price-based demand response program on the system reliability in security-constrained unit commitment problem coupled with wind farms in the presence of contingencies," Energy, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222012361
    DOI: 10.1016/j.energy.2022.124333
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222012361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124333?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aghaei, Jamshid & Nikoobakht, Ahmad & Siano, Pierluigi & Nayeripour, Majid & Heidari, Alireza & Mardaneh, Mohammad, 2016. "Exploring the reliability effects on the short term AC security-constrained unit commitment: A stochastic evaluation," Energy, Elsevier, vol. 114(C), pages 1016-1032.
    2. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao & Tang, Bowen, 2017. "Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system," Applied Energy, Elsevier, vol. 190(C), pages 1126-1137.
    3. Aghaei, Jamshid & Alizadeh, Mohammad-Iman & Siano, Pierluigi & Heidari, Alireza, 2016. "Contribution of emergency demand response programs in power system reliability," Energy, Elsevier, vol. 103(C), pages 688-696.
    4. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    5. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2019. "Market-based participation of energy storage scheme to support renewable energy sources for the procurement of energy and spinning reserve," Renewable Energy, Elsevier, vol. 135(C), pages 326-344.
    6. Cornelius, Adam & Bandyopadhyay, Rubenka & Patiño-Echeverri, Dalia, 2018. "Assessing environmental, economic, and reliability impacts of flexible ramp products in MISO's electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2291-2298.
    7. Heydarian-Forushani, E. & Golshan, M.E.H. & Shafie-khah, M., 2016. "Flexible interaction of plug-in electric vehicle parking lots for efficient wind integration," Applied Energy, Elsevier, vol. 179(C), pages 338-349.
    8. Vatanpour, Mohsen & Sadeghi Yazdankhah, Ahmad, 2018. "The impact of energy storage modeling in coordination with wind farm and thermal units on security and reliability in a stochastic unit commitment," Energy, Elsevier, vol. 162(C), pages 476-490.
    9. Bai, Linquan & Li, Fangxing & Cui, Hantao & Jiang, Tao & Sun, Hongbin & Zhu, Jinxiang, 2016. "Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 270-279.
    10. Kazemi, Mehdi & Siano, Pierluigi & Sarno, Debora & Goudarzi, Arman, 2016. "Evaluating the impact of sub-hourly unit commitment method on spinning reserve in presence of intermittent generators," Energy, Elsevier, vol. 113(C), pages 338-354.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saffari, Mohammadali & Crownshaw, Timothy & McPherson, Madeleine, 2023. "Assessing the potential of demand-side flexibility to improve the performance of electricity systems under high variable renewable energy penetration," Energy, Elsevier, vol. 272(C).
    2. Akhlaghi, M. & Moravej, Z. & Bagheri, A., 2022. "Maximizing wind energy utilization in smart power systems using a flexible network-constrained unit commitment through dynamic lines and transformers rating," Energy, Elsevier, vol. 261(PA).
    3. Dong, Jizhe & Li, Yuanhan & Zuo, Shi & Wu, Xiaomei & Zhang, Zuyao & Du, Jiang, 2023. "An intraperiod arbitrary ramping-rate changing model in unit commitment," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Heydarian-Forushani, E. & Golshan, M.E.H. & Siano, Pierluigi, 2017. "Evaluating the benefits of coordinated emerging flexible resources in electricity markets," Applied Energy, Elsevier, vol. 199(C), pages 142-154.
    4. Zhang, Menglin & Ai, Xiaomeng & Fang, Jiakun & Yao, Wei & Zuo, Wenping & Chen, Zhe & Wen, Jinyu, 2018. "A systematic approach for the joint dispatch of energy and reserve incorporating demand response," Applied Energy, Elsevier, vol. 230(C), pages 1279-1291.
    5. Otashu, Joannah I. & Baldea, Michael, 2018. "Grid-level “battery” operation of chemical processes and demand-side participation in short-term electricity markets," Applied Energy, Elsevier, vol. 220(C), pages 562-575.
    6. Shen, Ziqi & Wei, Wei & Wu, Lei & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Economic dispatch of power systems with LMP-dependent demands: A non-iterative MILP model," Energy, Elsevier, vol. 233(C).
    7. Kim, Tae Hyun & Shin, Hansol & Kwag, Kyuhyeong & Kim, Wook, 2020. "A parallel multi-period optimal scheduling algorithm in microgrids with energy storage systems using decomposed inter-temporal constraints," Energy, Elsevier, vol. 202(C).
    8. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    9. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    10. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    11. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    12. Da Li & Shijie Zhang & Yunhan Xiao, 2020. "Interval Optimization-Based Optimal Design of Distributed Energy Resource Systems under Uncertainties," Energies, MDPI, vol. 13(13), pages 1-18, July.
    13. Misaghian, M.S. & Saffari, M. & Kia, M. & Heidari, A. & Shafie-khah, M. & Catalão, J.P.S., 2018. "Tri-level optimization of industrial microgrids considering renewable energy sources, combined heat and power units, thermal and electrical storage systems," Energy, Elsevier, vol. 161(C), pages 396-411.
    14. Anvari-Moghaddam, Amjad & Rahimi-Kian, Ashkan & Mirian, Maryam S. & Guerrero, Josep M., 2017. "A multi-agent based energy management solution for integrated buildings and microgrid system," Applied Energy, Elsevier, vol. 203(C), pages 41-56.
    15. Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
    16. Pambour, Kwabena Addo & Cakir Erdener, Burcin & Bolado-Lavin, Ricardo & Dijkema, Gerard P.J., 2017. "SAInt – A novel quasi-dynamic model for assessing security of supply in coupled gas and electricity transmission networks," Applied Energy, Elsevier, vol. 203(C), pages 829-857.
    17. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    18. Ordoudis, Christos & Pinson, Pierre & Morales, Juan M., 2019. "An Integrated Market for Electricity and Natural Gas Systems with Stochastic Power Producers," European Journal of Operational Research, Elsevier, vol. 272(2), pages 642-654.
    19. Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang & Rieger, Alexander & Thimmel, Markus, 2018. "One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids," Applied Energy, Elsevier, vol. 210(C), pages 800-814.
    20. Kong, Xiangyu & Sun, Fangyuan & Huo, Xianxu & Li, Xue & Shen, Yu, 2020. "Hierarchical optimal scheduling method of heat-electricity integrated energy system based on Power Internet of Things," Energy, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222012361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.