IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v252y2022ics0360544222009495.html
   My bibliography  Save this article

Capacity configuration optimization of multi-energy system integrating wind turbine/photovoltaic/hydrogen/battery

Author

Listed:
  • Zhang, Yi
  • Sun, Hexu
  • Tan, Jianxin
  • Li, Zheng
  • Hou, Weimin
  • Guo, Yingjun

Abstract

Wind and solar energy are paid more attention as clean and renewable resources. However, due to the intermittence and fluctuation of renewable energy, the problem of abandoning wind and photovoltaic power is serious in China. Hydrogen production by water electrolysis is the effective way to solve the problem of renewable energy absorption. However, the multi-energy system has several optimization objectives for the capacity configuration, which are generally conflicting. The “impossible triangle” problem in the system is difficult to solve. Furthermore, the system capacity configuration is greatly affected by factors such as operating mode and energy storage form, etc. Therefore, the three different application scenarios are proposed both in the off-grid and grid-connected system, in which the energy storage system consists of only battery, only hydrogen, both hydrogen and battery, respectively. The system operation strategy is based on that the main purpose of hydrogen energy is storage, transportation and utilization alone. The multi-objective capacity configuration optimization based on the improved NSGA-Ⅱalgorithm is proposed, which is verified to be superior to NSGA-Ⅱand MOPSO. The capacity configurations of off-grid and grid-connected multi-energy systems are compared and analyzed. The economy of grid-connected system is better than that of off-grid system. The sensitivity analysis of important parameters is carried out such as wind/solar resources, load level and equipment price. The average wind speed has the significant impact on the net present value of the system. The capacity configuration and operation strategy proposed in this paper are effectively feasible to increase the renewable energy accommodation and meet comprehensive performance requirements of multi-energy complementary system.

Suggested Citation

  • Zhang, Yi & Sun, Hexu & Tan, Jianxin & Li, Zheng & Hou, Weimin & Guo, Yingjun, 2022. "Capacity configuration optimization of multi-energy system integrating wind turbine/photovoltaic/hydrogen/battery," Energy, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009495
    DOI: 10.1016/j.energy.2022.124046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222009495
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Won, Wangyun & Kwon, Hweeung & Han, Jee-Hoon & Kim, Jiyong, 2017. "Design and operation of renewable energy sources based hydrogen supply system: Technology integration and optimization," Renewable Energy, Elsevier, vol. 103(C), pages 226-238.
    2. Amrollahi, Mohammad Hossein & Bathaee, Seyyed Mohammad Taghi, 2017. "Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response," Applied Energy, Elsevier, vol. 202(C), pages 66-77.
    3. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2016. "Optimization modeling to support renewables integration in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 316-325.
    4. Malheiro, André & Castro, Pedro M. & Lima, Ricardo M. & Estanqueiro, Ana, 2015. "Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems," Renewable Energy, Elsevier, vol. 83(C), pages 646-657.
    5. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    6. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    7. Nogueira, Carlos Eduardo Camargo & Vidotto, Magno Luiz & Niedzialkoski, Rosana Krauss & de Souza, Samuel Nelson Melegari & Chaves, Luiz Inácio & Edwiges, Thiago & Santos, Darlisson Bentes dos & Wernck, 2014. "Sizing and simulation of a photovoltaic-wind energy system using batteries, applied for a small rural property located in the south of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 151-157.
    8. Khan, Faizan A. & Pal, Nitai & Saeed, Syed.H., 2018. "Review of solar photovoltaic and wind hybrid energy systems for sizing strategies optimization techniques and cost analysis methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 937-947.
    9. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    10. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    11. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    12. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Yi & Hu, Xiongfeng & Gao, Jun & Han, Yu & Sun, Anwei & Zheng, Nan & Shuai, Wei & Xiao, Gang & Guo, Meiting & Ni, Meng & Xu, Haoran, 2022. "Solid oxide electrolysis cell under real fluctuating power supply with a focus on thermal stress analysis," Energy, Elsevier, vol. 261(PA).
    2. Gao, Mingfei & Han, Zhonghe & Zhang, Ce & Li, Peng & Wu, Di & Li, Peng, 2023. "Optimal configuration for regional integrated energy systems with multi-element hybrid energy storage," Energy, Elsevier, vol. 277(C).
    3. Wang, Shouxiang & Wang, Shaomin & Zhao, Qianyu & Dong, Shuai & Li, Hao, 2023. "Optimal dispatch of integrated energy station considering carbon capture and hydrogen demand," Energy, Elsevier, vol. 269(C).
    4. Zhang, Qinjin & Xie, Di & Zeng, Yuji & Liu, Yancheng & Yu, Heyang & Liu, Siyuan, 2024. "Optimizing wind-solar hydrogen production through collaborative strategy with ALK/PEM multi-electrolyzer arrays," Renewable Energy, Elsevier, vol. 232(C).
    5. Jie Ji & Fucheng Wang & Mengxiong Zhou & Renwei Guo & Rundong Ji & Hui Huang & Jiayu Zhang & Muhammad Shahzad Nazir & Tian Peng & Chu Zhang & Jiahui Huang & Yaodong Wang, 2022. "Evaluation Study on a Novel Structure CCHP System with a New Comprehensive Index Using Improved ALO Algorithm," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    6. Xu, Guanxin & Wu, Yan & Tang, Shuo & Wang, Yufei & Yu, Xinhai & Ma, Mingyan, 2024. "Optimal design of hydrogen production processing coupling alkaline and proton exchange membrane electrolyzers," Energy, Elsevier, vol. 302(C).
    7. Zhao, Xudong & Wang, Yibo & Liu, Chuang & Cai, Guowei & Ge, Weichun & Wang, Bowen & Wang, Dongzhe & Shang, Jingru & Zhao, Yiru, 2024. "Two-stage day-ahead and intra-day scheduling considering electric arc furnace control and wind power modal decomposition," Energy, Elsevier, vol. 302(C).
    8. Zhang, Yusheng & Zhao, Xuehua & Wang, Xin & Li, Aiyun & Wu, Xinhao, 2023. "Multi-objective optimization design of a grid-connected hybrid hydro-photovoltaic system considering power transmission capacity," Energy, Elsevier, vol. 284(C).
    9. Zhiming Lu & Youting Li & Guying Zhuo & Chuanbo Xu, 2023. "Configuration Optimization of Hydrogen-Based Multi-Microgrid Systems under Electricity Market Trading and Different Hydrogen Production Strategies," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    10. Yin, Linfei & Cai, Zhenjian, 2024. "Multimodal multi-objective hierarchical distributed consensus method for multimodal multi-objective economic dispatch of hierarchical distributed power systems," Energy, Elsevier, vol. 295(C).
    11. Zhou, Yuan & Wang, Jiangjiang & Li, Yuxin & Wei, Changqi, 2023. "A collaborative management strategy for multi-objective optimization of sustainable distributed energy system considering cloud energy storage," Energy, Elsevier, vol. 280(C).
    12. Takele Ferede Agajie & Ahmed Ali & Armand Fopah-Lele & Isaac Amoussou & Baseem Khan & Carmen Lilí Rodríguez Velasco & Emmanuel Tanyi, 2023. "A Comprehensive Review on Techno-Economic Analysis and Optimal Sizing of Hybrid Renewable Energy Sources with Energy Storage Systems," Energies, MDPI, vol. 16(2), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    2. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    4. Li, Rong & Guo, Su & Yang, Yong & Liu, Deyou, 2020. "Optimal sizing of wind/ concentrated solar plant/ electric heater hybrid renewable energy system based on two-stage stochastic programming," Energy, Elsevier, vol. 209(C).
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    7. Akhlaque Ahmad Khan & Ahmad Faiz Minai & Rupendra Kumar Pachauri & Hasmat Malik, 2022. "Optimal Sizing, Control, and Management Strategies for Hybrid Renewable Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(17), pages 1-29, August.
    8. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
    9. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    10. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    11. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    12. Sadeghi, Delnia & Hesami Naghshbandy, Ali & Bahramara, Salah, 2020. "Optimal sizing of hybrid renewable energy systems in presence of electric vehicles using multi-objective particle swarm optimization," Energy, Elsevier, vol. 209(C).
    13. Hwang, Haejin & Kim, Sunghoon & García, Álvaro González & Kim, Jiyong, 2021. "Global sensitivity analysis for assessing the economic feasibility of renewable energy systems for an off-grid electrified city," Energy, Elsevier, vol. 216(C).
    14. Yong Yang & Rong Li, 2020. "Techno-Economic Optimization of an Off-Grid Solar/Wind/Battery Hybrid System with a Novel Multi-Objective Differential Evolution Algorithm," Energies, MDPI, vol. 13(7), pages 1-16, April.
    15. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    16. Qolipour, Mojtaba & Mostafaeipour, Ali & Tousi, Omid Mohseni, 2017. "Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 113-123.
    17. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    18. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    19. Javed, Muhammad Shahzad & Jurasz, Jakub & McPherson, Madeleine & Dai, Yanjun & Ma, Tao, 2022. "Quantitative evaluation of renewable-energy-based remote microgrids: curtailment, load shifting, and reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    20. Shahryar Jafarinejad & Lauren E. Beckingham & Mandar Kathe & Kathy Henderson, 2021. "The Renewable Energy (RE) Industry Workforce Needs: RE Simulation and Analysis Tools Teaching as an Effective Way to Enhance Undergraduate Engineering Students’ Learning," Sustainability, MDPI, vol. 13(21), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.