IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v249y2022ics0360544222006077.html
   My bibliography  Save this article

The effect of the altitude on the performance of a solar chimney

Author

Listed:
  • Bouchair, Ammar

Abstract

This study aimed to show the relationship between the altitude and the performance of a solar chimney based on simulation analysis and numerical calculation. Steady-state heat transfer from isothermal vertical walls of a chimney is modelled analytically. The paper introduces the basic concepts and governing equations for modelling heat transfer and air flow rates within the solar chimney at various altitudes. The relationship between altitude, temperature, and mass flow rates for the buoyancy-driven chimney flow is complex. A multidimensional equation comprising the inverse tangent and inverse hyperbolic tangent functions is developed. A Matlab program was developed to overcome the problem of the non-linearity of the equation. The results obtained showed that the altitude has modest influence but not substantial on the performance of the solar chimney if we assumed a constant ambient air temperature for all altitudes. But in real climatic conditions, the ambient temperature is altitude dependent. In these circumstances, the performance of the solar chimney is significantly influenced by the altitude. Therefore, microclimatic conditions should be used rather than large-scale area climatic data for solar chimney design.

Suggested Citation

  • Bouchair, Ammar, 2022. "The effect of the altitude on the performance of a solar chimney," Energy, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222006077
    DOI: 10.1016/j.energy.2022.123704
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222006077
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernandes, Marco S. & Rodrigues, Eugénio & Gaspar, Adélio Rodrigues & Costa, José J. & Gomes, Álvaro, 2020. "The contribution of ventilation on the energy performance of small residential buildings in the Mediterranean region," Energy, Elsevier, vol. 191(C).
    2. Ben Cheikh, Hamida & Bouchair, Ammar, 2004. "Passive cooling by evapo-reflective roof for hot dry climates," Renewable Energy, Elsevier, vol. 29(11), pages 1877-1886.
    3. Aboulnaga, Mohsen M., 1998. "A roof solar chimney assisted by cooling cavity for natural ventilation in buildings in hot arid climates: An energy conservation approach in Al-Ain city," Renewable Energy, Elsevier, vol. 14(1), pages 357-363.
    4. Khedari, J. & Hirunlabh, J. & Bunnag, T., 1996. "Expertmental study of a Roof Solar Collector towards the natural ventilation of new habitations," Renewable Energy, Elsevier, vol. 8(1), pages 335-338.
    5. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2020. "Passive and active performance assessment of building integrated hybrid solar photovoltaic/thermal collector prototypes: Energy, comfort, and economic analyses," Energy, Elsevier, vol. 209(C).
    6. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo, 2020. "Enhancing trains envelope – heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses," Energy, Elsevier, vol. 204(C).
    7. Rouleau, Jean & Gosselin, Louis & Blanchet, Pierre, 2019. "Robustness of energy consumption and comfort in high-performance residential building with respect to occupant behavior," Energy, Elsevier, vol. 188(C).
    8. Harris, D.J. & Helwig, N., 2007. "Solar chimney and building ventilation," Applied Energy, Elsevier, vol. 84(2), pages 135-146, February.
    9. Bahadori, M.N. & Mazidi, M. & Dehghani, A.R., 2008. "Experimental investigation of new designs of wind towers," Renewable Energy, Elsevier, vol. 33(10), pages 2273-2281.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    2. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    3. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo, 2022. "Energy, economic, and environmental impacts of enhanced ventilation strategies on railway coaches to reduce Covid-19 contagion risks," Energy, Elsevier, vol. 256(C).
    4. Sengupta, Ayan & Mishra, Dipti Prasad & Sarangi, Shailesh Kumar, 2022. "Computational performance analysis of a solar chimney using surface modifications of the absorber plate," Renewable Energy, Elsevier, vol. 185(C), pages 1095-1109.
    5. Ren, Xiu-Hong & Wang, Lei & Liu, Run-Zhe & Wang, Lin & Zhao, Fu-Yun, 2021. "Thermal stack airflows inside the solar chimney with discrete heat sources: Reversal flow regime defined by chimney inclination and thermal Rayleigh number," Renewable Energy, Elsevier, vol. 163(C), pages 342-356.
    6. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Guzović, Zvonimir & Duic, Neven & Piacentino, Antonio & Markovska, Natasa & Mathiesen, Brian Vad & Lund, Henrik, 2022. "Recent advances in methods, policies and technologies at sustainable energy systems development," Energy, Elsevier, vol. 245(C).
    8. Bouchahm, Yasmina & Bourbia, Fatiha & Belhamri, Azeddine, 2011. "Performance analysis and improvement of the use of wind tower in hot dry climate," Renewable Energy, Elsevier, vol. 36(3), pages 898-906.
    9. Giovanni Barone & Annamaria Buonomano & Cesare Forzano & Giovanni Francesco Giuzio & Adolfo Palombo, 2021. "Improving the Efficiency of Maritime Infrastructures through a BIM-Based Building Energy Modelling Approach: A Case Study in Naples, Italy," Energies, MDPI, vol. 14(16), pages 1-24, August.
    10. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    11. Alsailani, M. & Montazeri, H. & Rezaeiha, A., 2021. "Towards optimal aerodynamic design of wind catchers: Impact of geometrical characteristics," Renewable Energy, Elsevier, vol. 168(C), pages 1344-1363.
    12. Calautit, John Kaiser & Hughes, Ben Richard, 2016. "A passive cooling wind catcher with heat pipe technology: CFD, wind tunnel and field-test analysis," Applied Energy, Elsevier, vol. 162(C), pages 460-471.
    13. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    14. Radoslav Ponechal & Peter Krušinský & Peter Kysela & Peter Pisca, 2021. "Simulations of Airflow in the Roof Space of a Gothic Sanctuary Using CFD Models," Energies, MDPI, vol. 14(12), pages 1-20, June.
    15. Spanaki, Artemisia & Tsoutsos, Theocharis & Kolokotsa, Dionysia, 2011. "On the selection and design of the proper roof pond variant for passive cooling purposes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3523-3533.
    16. Xiaoyan Bian & Yao Zhang & Qibin Zhou & Ting Cao & Bengang Wei, 2021. "Numerical and Experimental Study of Lightning Stroke to BIPV Modules," Energies, MDPI, vol. 14(3), pages 1-15, February.
    17. Lindita Bande & Rahma Adan & Kim Young & Raghad Ghazal & Mukesh Jha & Amna Aldarmaki & Atmah Aldhaheri & Asma Alneyadi & Sharina Aldhaheri & Mira Khalifa, 2021. "Outdoor Thermal Comfort Study on a District Level as Part of the Housing Programs in Abu Dhabi and Al Ain, United Arab Emirates," Land, MDPI, vol. 10(3), pages 1-23, March.
    18. AboulNaga, M.M & Abdrabboh, S.N, 2000. "Improving night ventilation into low-rise buildings in hot-arid climates exploring a combined wall–roof solar chimney," Renewable Energy, Elsevier, vol. 19(1), pages 47-54.
    19. Sharifi, Ayyoob & Yamagata, Yoshiki, 2015. "Roof ponds as passive heating and cooling systems: A systematic review," Applied Energy, Elsevier, vol. 160(C), pages 336-357.
    20. Zeynab Emdadi & Nilofar Asim & Mohd Ambar Yarmo & Roslinda Shamsudin & Masita Mohammad & Kamaruzaman Sopian, 2016. "Green Material Prospects for Passive Evaporative Cooling Systems: Geopolymers," Energies, MDPI, vol. 9(8), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:249:y:2022:i:c:s0360544222006077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.