IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v246y2022ics0360544222003152.html
   My bibliography  Save this article

Annual thermal evaluation of a ventilated roof under warm weather conditions of Mexico

Author

Listed:
  • Lima-Téllez, T.
  • Chávez, Y.
  • Hernández-López, I.
  • Xamán, J.
  • Hernández-Pérez, I.

Abstract

An annual thermal evaluation of a ventilated roof (VR) for energy-saving purposes in two Mexican cities with warm weather is presented. It was developed a numerical code based on the global energy balance method to predict the thermal behavior of the VR. The code was verified, and it showed a good agreement with data reported in the literature. Weather data of the coldest and warmest days of each month for the two cities were provided to the numerical code as boundary conditions to perform the simulations. Thus, to quantify the benefits of using the VR, it was compared with a conventional roof (CR). The results showed that the implementation of VR significantly reduces the annual total heat gain by up to 50 and 60% for the climates BWh and Aw, respectively. In addition, it was found that for both climates the payback period of VR is smaller than a year and a half. In this way, VR is a passive technology with high potential to reduce the energy consumption for thermal comfort in buildings at a relatively low cost.

Suggested Citation

  • Lima-Téllez, T. & Chávez, Y. & Hernández-López, I. & Xamán, J. & Hernández-Pérez, I., 2022. "Annual thermal evaluation of a ventilated roof under warm weather conditions of Mexico," Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003152
    DOI: 10.1016/j.energy.2022.123412
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222003152
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123412?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zingre, Kishor T. & Wan, Man Pun & Wong, Swee Khian & Toh, Winston Boo Thian & Lee, Irene Yen Leng, 2015. "Modelling of cool roof performance for double-skin roofs in tropical climate," Energy, Elsevier, vol. 82(C), pages 813-826.
    2. Lee, Sau Wai & Lim, Chin Haw & Salleh, Elias @ Ilias Bin, 2016. "Reflective thermal insulation systems in building: A review on radiant barrier and reflective insulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 643-661.
    3. Nejat, Payam & Jomehzadeh, Fatemeh & Taheri, Mohammad Mahdi & Gohari, Mohammad & Abd. Majid, Muhd Zaimi, 2015. "A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 843-862.
    4. Xamán, J. & Rodriguez-Ake, A. & Zavala-Guillén, I. & Hernández-Pérez, I. & Arce, J. & Sauceda, D., 2020. "Thermal performance analysis of a roof with a PCM-layer under Mexican weather conditions," Renewable Energy, Elsevier, vol. 149(C), pages 773-785.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    2. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    3. Anass Berouine & Radouane Ouladsine & Mohamed Bakhouya & Mohamed Essaaidi, 2020. "Towards a Real-Time Predictive Management Approach of Indoor Air Quality in Energy-Efficient Buildings," Energies, MDPI, vol. 13(12), pages 1-16, June.
    4. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    5. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    6. Roula Inglesi-Lotz & Luis Diez del Corral Morales, 2017. "The Effect of Education on a Country’s Energy Consumption: Evidence from Developed and Developing Countries," Working Papers 201733, University of Pretoria, Department of Economics.
    7. Galatioto, A. & Ricciu, R. & Salem, T. & Kinab, E., 2019. "Energy and economic analysis on retrofit actions for Italian public historic buildings," Energy, Elsevier, vol. 176(C), pages 58-66.
    8. Milad Zeraatpisheh & Reza Arababadi & Mohsen Saffari Pour, 2018. "Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs," Energies, MDPI, vol. 11(12), pages 1-19, November.
    9. Jinghua Yu & Hongyun Yang & Junwei Tao & Jingang Zhao & Yongqiang Luo, 2023. "Performance Evaluation and Optimum Design of Ventilation Roofs with Different Positions of Shape-Stabilized PCM," Sustainability, MDPI, vol. 15(11), pages 1-33, May.
    10. Javier Uche & Amaya Martínez-Gracia & Ignacio Zabalza & Sergio Usón, 2024. "Renewable Energy Source (RES)-Based Polygeneration Systems for Multi-Family Houses," Sustainability, MDPI, vol. 16(3), pages 1-21, January.
    11. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    13. Li, Biao & Han, Zongwei & Bai, Chenguang & Hu, Honghao, 2019. "The influence of soil thermal properties on the operation performance on ground source heat pump system," Renewable Energy, Elsevier, vol. 141(C), pages 903-913.
    14. Zhuang, Chaoqun & Gao, Yafeng & Zhao, Yingru & Levinson, Ronnen & Heiselberg, Per & Wang, Zhiqiang & Guo, Rui, 2021. "Potential benefits and optimization of cool-coated office buildings: A case study in Chongqing, China," Energy, Elsevier, vol. 226(C).
    15. Tatchell-Evans, Morgan & Kapur, Nik & Summers, Jonathan & Thompson, Harvey & Oldham, Dan, 2017. "An experimental and theoretical investigation of the extent of bypass air within data centres employing aisle containment, and its impact on power consumption," Applied Energy, Elsevier, vol. 186(P3), pages 457-469.
    16. Fan Yang & Qian Mao, 2023. "Auto-Evaluation Model for the Prediction of Building Energy Consumption That Combines Modified Kalman Filtering and Long Short-Term Memory," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
    17. Antoni Fonseca i Casas & Pau Fonseca i Casas & Josep Casanovas, 2016. "Analysis of Applications to Improve the Energy Savings in Residential Buildings Based on Systemic Quality Model," Sustainability, MDPI, vol. 8(10), pages 1-18, October.
    18. Chia-Nan Wang & Hector Tibo & Duy Hung Duong, 2020. "Renewable Energy Utilization Analysis of Highly and Newly Industrialized Countries Using an Undesirable Output Model," Energies, MDPI, vol. 13(10), pages 1-21, May.
    19. Wu, Dong & Geng, Yong & Pan, Hengyu, 2021. "Whether natural gas consumption bring double dividends of economic growth and carbon dioxide emissions reduction in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.