IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs036054422102404x.html
   My bibliography  Save this article

Optimal market-based operation of microgrid with the integration of wind turbines, energy storage system and demand response resources

Author

Listed:
  • MansourLakouraj, Mohammad
  • Shahabi, Majid
  • Shafie-khah, Miadreza
  • Catalão, João P.S.

Abstract

This paper deals with an optimal operation of a microgrid in the electricity market and presents the communication between the distribution market operator and microgrid operator. The distribution market operator controls and manages the electricity market established in the distribution level, determining the amount of both electricity price and power exchange between market participants. The microgrid operator is able to purchase active and reactive power from the local distribution market. An effective short-term scheduling of the microgrid is implemented to ensure optimal operation. A risk-based stochastic model is used to model the prevailing uncertainties such as loads, wind generation, and main-grid availability in a market-based operation framework. Moreover, in this model, a linearized AC power flow is added to the mathematical formulations to offer a comprehensive solution to the security-constraint operation of the microgrid. The stochastic operation strategy is formulated as a mixed integer linear programming problem. Regarding the uncertainty modeling, the substation equipment failure is modeled with Monte-Carlo algorithm. The effectiveness of the risk-based stochastic method is demonstrated using a microgrid test bed in the presence of demand response resources, dispatchable and wind generation units as well as energy storage system. The results demonstrate demand response program can significantly reduce the operation cost in worst scenarios. Also, it is indicated that the risk-averse decisions reduce the risk of experiencing costly scenario. The proposed framework incorporating the distribution market constraints reduces the uncertainty in real-time operation as it can specified the required energy before running the problem. The deviations from assigned energy to the microgrid are penalized through the distribution market operator.

Suggested Citation

  • MansourLakouraj, Mohammad & Shahabi, Majid & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Optimal market-based operation of microgrid with the integration of wind turbines, energy storage system and demand response resources," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s036054422102404x
    DOI: 10.1016/j.energy.2021.122156
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422102404X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122156?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. MansourLakouraj, Mohammad & Shahabi, Majid & Shafie-khah, Miadreza & Ghoreishi, Niloofar & Catalão, João P.S., 2020. "Optimal power management of dependent microgrid considering distribution market and unused power capacity," Energy, Elsevier, vol. 200(C).
    2. Shams, Mohammad H. & Shahabi, Majid & Khodayar, Mohammad E., 2018. "Stochastic day-ahead scheduling of multiple energy Carrier microgrids with demand response," Energy, Elsevier, vol. 155(C), pages 326-338.
    3. Shams, Mohammad H. & Shahabi, Majid & MansourLakouraj, Mohammad & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Adjustable robust optimization approach for two-stage operation of energy hub-based microgrids," Energy, Elsevier, vol. 222(C).
    4. Jordehi, A. Rezaee & Javadi, Mohammad Sadegh & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Information gap decision theory (IGDT)-based robust scheduling of combined cooling, heat and power energy hubs," Energy, Elsevier, vol. 231(C).
    5. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, December.
    6. Mansour-lakouraj, Mohammad & Shahabi, Majid, 2019. "Comprehensive analysis of risk-based energy management for dependent micro-grid under normal and emergency operations," Energy, Elsevier, vol. 171(C), pages 928-943.
    7. Li, Zhengmao & Xu, Yan, 2018. "Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes," Applied Energy, Elsevier, vol. 210(C), pages 974-986.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aguado, José A. & Paredes, Ángel, 2023. "Coordinated and decentralized trading of flexibility products in Inter-DSO Local Electricity Markets via ADMM," Applied Energy, Elsevier, vol. 337(C).
    2. Navid Rezaei & Abdollah Ahmadi & Mohammadhossein Deihimi, 2022. "A Comprehensive Review of Demand-Side Management Based on Analysis of Productivity: Techniques and Applications," Energies, MDPI, vol. 15(20), pages 1-28, October.
    3. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    4. Zhang, Jing & Hu, Sijia & Zhang, Zhiwen & Li, Yong & Lin, Jinjie & Wu, Jinbo & Gong, Yusheng & He, Li, 2023. "An adaptive frequency regulation strategy with high renewable energy participating level for isolated microgrid," Renewable Energy, Elsevier, vol. 212(C), pages 683-698.
    5. Jianying Li & Minsheng Yang & Yuexing Zhang & Jianqi Li & Jianquan Lu, 2023. "Micro-Grid Day-Ahead Stochastic Optimal Dispatch Considering Multiple Demand Response and Electric Vehicles," Energies, MDPI, vol. 16(8), pages 1-15, April.
    6. Zhang, Dongdong & Li, Chunjiao & Goh, Hui Hwang & Ahmad, Tanveer & Zhu, Hongyu & Liu, Hui & Wu, Thomas, 2022. "A comprehensive overview of modeling approaches and optimal control strategies for cyber-physical resilience in power systems," Renewable Energy, Elsevier, vol. 189(C), pages 1383-1406.
    7. Bio Gassi, Karim & Baysal, Mustafa, 2023. "Improving real-time energy decision-making model with an actor-critic agent in modern microgrids with energy storage devices," Energy, Elsevier, vol. 263(PE).
    8. Fathy, Ahmed & Ferahtia, Seydali & Rezk, Hegazy & Yousri, Dalia & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid," Energy, Elsevier, vol. 247(C).
    9. Zhang, Rufeng & Li, Xue & Fu, Linbo & Jiang, Tao & Li, Guoqing & Chen, Houhe, 2023. "Network-aware energy management for microgrids in distribution market: A leader-followers approach," Applied Energy, Elsevier, vol. 332(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MansourLakouraj, Mohammad & Shahabi, Majid & Shafie-khah, Miadreza & Ghoreishi, Niloofar & Catalão, João P.S., 2020. "Optimal power management of dependent microgrid considering distribution market and unused power capacity," Energy, Elsevier, vol. 200(C).
    2. Shams, Mohammad H. & Shahabi, Majid & MansourLakouraj, Mohammad & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Adjustable robust optimization approach for two-stage operation of energy hub-based microgrids," Energy, Elsevier, vol. 222(C).
    3. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    4. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    5. Zhang, Tairan & Sobhani, Behrouz, 2023. "Optimal economic programming of an energy hub in the power system while taking into account the uncertainty of renewable resources, risk-taking and electric vehicles using a developed routing method," Energy, Elsevier, vol. 271(C).
    6. Zhang, Guodao & Ge, Yisu & Pan, Xiaotian & Zheng, Yun & Yang, Yanhong, 2023. "Hybrid robust-stochastic multi-objective optimization of combined cooling, heating, hydrogen and power-based microgrids," Energy, Elsevier, vol. 274(C).
    7. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Lingmin, Chen & Jiekang, Wu & Fan, Wu & Huiling, Tang & Changjie, Li & Yan, Xiong, 2020. "Energy flow optimization method for multi-energy system oriented to combined cooling, heating and power," Energy, Elsevier, vol. 211(C).
    9. Zandrazavi, Seyed Farhad & Guzman, Cindy Paola & Pozos, Alejandra Tabares & Quiros-Tortos, Jairo & Franco, John Fredy, 2022. "Stochastic multi-objective optimal energy management of grid-connected unbalanced microgrids with renewable energy generation and plug-in electric vehicles," Energy, Elsevier, vol. 241(C).
    10. Mansour-lakouraj, Mohammad & Shahabi, Majid, 2019. "Comprehensive analysis of risk-based energy management for dependent micro-grid under normal and emergency operations," Energy, Elsevier, vol. 171(C), pages 928-943.
    11. Jordehi, A. Rezaee & Javadi, Mohammad Sadegh & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Information gap decision theory (IGDT)-based robust scheduling of combined cooling, heat and power energy hubs," Energy, Elsevier, vol. 231(C).
    12. Yasemin Merzifonluoglu & Eray Uzgoren, 2018. "Photovoltaic power plant design considering multiple uncertainties and risk," Annals of Operations Research, Springer, vol. 262(1), pages 153-184, March.
    13. Yu, Min Gyung & Pavlak, Gregory S., 2023. "Risk-aware sizing and transactive control of building portfolios with thermal energy storage," Applied Energy, Elsevier, vol. 332(C).
    14. Pandžić, Hrvoje & Kuzle, Igor & Capuder, Tomislav, 2013. "Virtual power plant mid-term dispatch optimization," Applied Energy, Elsevier, vol. 101(C), pages 134-141.
    15. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.
    17. Mohagheghi, Erfan & Gabash, Aouss & Alramlawi, Mansour & Li, Pu, 2018. "Real-time optimal power flow with reactive power dispatch of wind stations using a reconciliation algorithm," Renewable Energy, Elsevier, vol. 126(C), pages 509-523.
    18. Li, Haoran & Zhang, Chenghui & Sun, Bo, 2021. "Optimal design for component capacity of integrated energy system based on the active dispatch mode of multiple energy storages," Energy, Elsevier, vol. 227(C).
    19. Grover-Silva, Etta & Heleno, Miguel & Mashayekh, Salman & Cardoso, Gonçalo & Girard, Robin & Kariniotakis, George, 2018. "A stochastic optimal power flow for scheduling flexible resources in microgrids operation," Applied Energy, Elsevier, vol. 229(C), pages 201-208.
    20. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s036054422102404x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.