IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v228y2021ics0360544221007805.html
   My bibliography  Save this article

Probing the role of associative polymer on scCO2-Foam strength and rheology enhancement in bulk and porous media for improving oil displacement efficiency

Author

Listed:
  • Hanamertani, Alvinda Sri
  • Ahmed, Shehzad

Abstract

Foam mobility control technique has been extensively applied to encounter unfavorable sweep efficiency during CO2 injection in heterogeneous reservoirs. Harsh reservoir conditions have encouraged a need of effective mobility control agent. In this study, we present a comprehensive experimental investigation utilizing a newly developed water-soluble associative polymer as additive to foam system for stability and rheology enhancement. The performance of polymer enhanced foam on residual oil displacement was also evaluated in porous media. A significant increment in foam longevity and improved foam rheological behavior were obtained with associative polymer presence. Compared to conventional polymer’s performance, the associative polymer enhanced foam could establish the higher flow resistance and better compatibility with reservoir conditions. The addition of associative polymer profoundly increased the foam apparent viscosity and gas mobility reduction factor at optimum foam quality in the absence and presence of oil. A noticeable improvement in oil recovery efficiency was also observed in the case with associative polymer by which 28% incremental oil recovery was achieved, 14% higher than that obtained from polymer-free foam injection. The utilization of associative polymer enhanced foam is considered promising for a deepers foam propagation in the formation to recover substantial amount of residual oil.

Suggested Citation

  • Hanamertani, Alvinda Sri & Ahmed, Shehzad, 2021. "Probing the role of associative polymer on scCO2-Foam strength and rheology enhancement in bulk and porous media for improving oil displacement efficiency," Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221007805
    DOI: 10.1016/j.energy.2021.120531
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221007805
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Yuechao & Zhang, Yuying & Lei, Xu & Zhang, Yi & Song, Yongchen, 2020. "CO2 flooding enhanced oil recovery evaluated using magnetic resonance imaging technique," Energy, Elsevier, vol. 203(C).
    2. Tang, Jinyu & Vincent-Bonnieu, Sebastien & Rossen, William R., 2019. "CT coreflood study of foam flow for enhanced oil recovery: The effect of oil type and saturation," Energy, Elsevier, vol. 188(C).
    3. Ampomah, W. & Balch, R.S. & Cather, M. & Will, R. & Gunda, D. & Dai, Z. & Soltanian, M.R., 2017. "Optimum design of CO2 storage and oil recovery under geological uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 80-92.
    4. Shehzad Ahmed & Khaled Abdalla Elraies & Muhammad Rehan Hashmet & Alvinda Sri Hanamertani, 2017. "Viscosity Models for Polymer Free CO 2 Foam Fracturing Fluid with the Effect of Surfactant Concentration, Salinity and Shear Rate," Energies, MDPI, vol. 10(12), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Qianhui & Ding, Lei & Zhang, Lei & Ge, Jijiang & Rahman, Mohammad Azizur & Economou, Ioannis G. & Guérillot, Dominique, 2023. "Polymer enhanced foam for improving oil recovery in oil-wet carbonate reservoirs: A proof of concept and insights into the polymer-surfactant interactions," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
    2. Zhang, Xue & Su, Yuliang & Li, Lei & Da, Qi'an & Hao, Yongmao & Wang, Wendong & Liu, Jiahui & Gao, Xiaogang & Zhao, An & Wang, Kaiyu, 2022. "Microscopic remaining oil initiation mechanism and formation damage of CO2 injection after waterflooding in deep reservoirs," Energy, Elsevier, vol. 248(C).
    3. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    4. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    5. Xiaolong, Chen & Yiqiang, Li & Xiang, Tang & Huan, Qi & Xuebing, Sun & Jianghao, Luo, 2021. "Effect of gravity segregation on CO2 flooding under various pressure conditions: Application to CO2 sequestration and oil production," Energy, Elsevier, vol. 226(C).
    6. Wu, Qianhui & Ding, Lei & Zhang, Lei & Ge, Jijiang & Rahman, Mohammad Azizur & Economou, Ioannis G. & Guérillot, Dominique, 2023. "Polymer enhanced foam for improving oil recovery in oil-wet carbonate reservoirs: A proof of concept and insights into the polymer-surfactant interactions," Energy, Elsevier, vol. 264(C).
    7. Samin Raziperchikolaee & Ashwin Pasumarti & Srikanta Mishra, 2020. "The effect of natural fractures on CO2 storage performance and oil recovery from CO2 and WAG injection in an Appalachian basin reservoir," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1098-1114, October.
    8. Turgay Ertekin & Qian Sun, 2019. "Artificial Intelligence Applications in Reservoir Engineering: A Status Check," Energies, MDPI, vol. 12(15), pages 1-22, July.
    9. Zhou, Xiang & Yuan, Qingwang & Rui, Zhenhua & Wang, Hanyi & Feng, Jianwei & Zhang, Liehui & Zeng, Fanhua, 2019. "Feasibility study of CO2 huff 'n' puff process to enhance heavy oil recovery via long core experiments," Applied Energy, Elsevier, vol. 236(C), pages 526-539.
    10. Dai, Zhenxue & Zhang, Ye & Bielicki, Jeffrey & Amooie, Mohammad Amin & Zhang, Mingkan & Yang, Changbing & Zou, Youqin & Ampomah, William & Xiao, Ting & Jia, Wei & Middleton, Richard & Zhang, Wen & Sun, 2018. "Heterogeneity-assisted carbon dioxide storage in marine sediments," Applied Energy, Elsevier, vol. 225(C), pages 876-883.
    11. Scanziani, Alessio & Singh, Kamaljit & Menke, Hannah & Bijeljic, Branko & Blunt, Martin J., 2020. "Dynamics of enhanced gas trapping applied to CO2 storage in the presence of oil using synchrotron X-ray micro tomography," Applied Energy, Elsevier, vol. 259(C).
    12. Shehzad Ahmed & Khaled Abdalla Elraies & Muhammad Rehan Hashmet & Mohamad Sahban Alnarabiji, 2018. "Empirical Modeling of the Viscosity of Supercritical Carbon Dioxide Foam Fracturing Fluid under Different Downhole Conditions," Energies, MDPI, vol. 11(4), pages 1-16, March.
    13. Chen, Bailian & Pawar, Rajesh J., 2019. "Characterization of CO2 storage and enhanced oil recovery in residual oil zones," Energy, Elsevier, vol. 183(C), pages 291-304.
    14. Abdoli, B. & Hooshmand, F. & MirHassani, S.A., 2023. "A novel stochastic programming model under endogenous uncertainty for the CCS-EOR planning problem," Applied Energy, Elsevier, vol. 338(C).
    15. Anna Samnioti & Vassilis Gaganis, 2023. "Applications of Machine Learning in Subsurface Reservoir Simulation—A Review—Part II," Energies, MDPI, vol. 16(18), pages 1-53, September.
    16. Zhang, Tong & Tang, Ming & Ma, Yankun & Zhu, Guangpei & Zhang, Qinghe & Wu, Jun & Xie, Zhizheng, 2022. "Experimental study on CO2/Water flooding mechanism and oil recovery in ultralow - Permeability sandstone with online LF-NMR," Energy, Elsevier, vol. 252(C).
    17. Mohamad Reza Soltanian & Mohammad Amin Amooie & David Cole & David Graham & Susan Pfiffner & Tommy Phelps & Joachim Moortgat, 2018. "Transport of perfluorocarbon tracers in the Cranfield Geological Carbon Sequestration Project," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(4), pages 650-671, August.
    18. Ping Yue & Feng Liu & Kai Yang & Chunshuo Han & Chao Ren & Jiangtang Zhou & Xiukun Wang & Quantang Fang & Xinxin Li & Liangbin Dou, 2022. "Micro-Displacement and Storage Mechanism of CO 2 in Tight Sandstone Reservoirs Based on CT Scanning," Energies, MDPI, vol. 15(17), pages 1-16, August.
    19. Yang, Renfeng & Jiang, Ruizhong & Guo, Sheng & Chen, Han & Tang, Shasha & Duan, Rui, 2021. "Analytical study on the Critical Water Cut for Water Plugging: Water cut increasing control and production enhancement," Energy, Elsevier, vol. 214(C).
    20. Chen, Bailian & Harp, Dylan R. & Lin, Youzuo & Keating, Elizabeth H. & Pawar, Rajesh J., 2018. "Geologic CO2 sequestration monitoring design: A machine learning and uncertainty quantification based approach," Applied Energy, Elsevier, vol. 225(C), pages 332-345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221007805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.