IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6201-d898077.html
   My bibliography  Save this article

Micro-Displacement and Storage Mechanism of CO 2 in Tight Sandstone Reservoirs Based on CT Scanning

Author

Listed:
  • Ping Yue

    (State Key Laboratory of Reservoir Geology and Development, Southwest Petroleum University, Chengdu 610500, China)

  • Feng Liu

    (School of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China)

  • Kai Yang

    (School of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China)

  • Chunshuo Han

    (School of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China)

  • Chao Ren

    (Changqing Oilfield Company, Petro China, Xi’an 710018, China)

  • Jiangtang Zhou

    (Changqing Oilfield Company, Petro China, Xi’an 710018, China)

  • Xiukun Wang

    (Institute of Unconventional Oil and Gas Science and Technology, China University of Petroleum (Beijing), Beijing 102249, China)

  • Quantang Fang

    (State Key Laboratory of Reservoir Geology and Development, Southwest Petroleum University, Chengdu 610500, China)

  • Xinxin Li

    (Changqing Engineering Design Co., Ltd., Petro China, Xi’an 710018, China)

  • Liangbin Dou

    (School of Petroleum Engineering, Xi’an Shiyou University, Xi’an 710065, China)

Abstract

Tight sandstone reservoirs are ideal locations for CO 2 storage. To evaluate the oil displacement efficiency and storage potential of CO 2 in the tight sandstone reservoir in the Huang 3 area of the Changqing Oilfield, four kinds of displacement experiments were conducted on core samples from the Chang 8 Formation in the Huang 3 area. These experiments were performed using micro-displacement equipment, digital core technology, and an online CT scanning system; the different oil displacement processes were recorded as three-dimensional images. The results show that the CO 2 flooding alternated with water scheme can improve crude oil recovery the most. Comparing the cores before and after the displacement shows that the amount of crude oil in pores with larger sizes decreases more. The remaining oil is mainly in thin films or is dispersed and star-shaped, indicating that the crude oil in the medium and large pores is swept and recovered. The CO 2 displacement efficiency is 41.67~55.08%, and the CO 2 storage rate is 38.16~46.89%. The proportion of remaining oil in the throat of the small and medium-sized pores is still high, which is the key to oil recovery in the later stages.

Suggested Citation

  • Ping Yue & Feng Liu & Kai Yang & Chunshuo Han & Chao Ren & Jiangtang Zhou & Xiukun Wang & Quantang Fang & Xinxin Li & Liangbin Dou, 2022. "Micro-Displacement and Storage Mechanism of CO 2 in Tight Sandstone Reservoirs Based on CT Scanning," Energies, MDPI, vol. 15(17), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6201-:d:898077
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tang, Jinyu & Vincent-Bonnieu, Sebastien & Rossen, William R., 2019. "CT coreflood study of foam flow for enhanced oil recovery: The effect of oil type and saturation," Energy, Elsevier, vol. 188(C).
    2. Saraf, Shubham & Bera, Achinta, 2021. "A review on pore-scale modeling and CT scan technique to characterize the trapped carbon dioxide in impermeable reservoir rocks during sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Gunde, Akshay C. & Bera, Bijoyendra & Mitra, Sushanta K., 2010. "Investigation of water and CO2 (carbon dioxide) flooding using micro-CT (micro-computed tomography) images of Berea sandstone core using finite element simulations," Energy, Elsevier, vol. 35(12), pages 5209-5216.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Qianhui & Ding, Lei & Zhang, Lei & Ge, Jijiang & Rahman, Mohammad Azizur & Economou, Ioannis G. & Guérillot, Dominique, 2023. "Polymer enhanced foam for improving oil recovery in oil-wet carbonate reservoirs: A proof of concept and insights into the polymer-surfactant interactions," Energy, Elsevier, vol. 264(C).
    2. Le Wang & Haowen Wu & Zhourong Cao & Shijie Fang & Shiyu Duan & Yishuo Wang, 2023. "Influence of Different Redevelopment Measures on Water–Oil Immiscible Displacement and Mechanism Analysis," Energies, MDPI, vol. 16(13), pages 1-19, June.
    3. Yang, Min & Liu, Qi & Zhao, Hongsheng & Li, Ziqiang & Liu, Bing & Li, Xingdong & Meng, Fanyong, 2014. "Automatic X-ray inspection for escaped coated particles in spherical fuel elements of high temperature gas-cooled reactor," Energy, Elsevier, vol. 68(C), pages 385-398.
    4. Pandey, Anjanay & Sinha, A.S.K. & Chaturvedi, Krishna Raghav & Sharma, Tushar, 2021. "Experimental investigation on effect of reservoir conditions on stability and rheology of carbon dioxide foams of nonionic surfactant and polymer: Implications of carbon geo-storage," Energy, Elsevier, vol. 235(C).
    5. Zhao, Li & Guanhua, Ni & Yan, Wang & Hehe, Jiang & Yongzan, Wen & Haoran, Dou & Mao, Jing, 2022. "Semi-homogeneous model of coal based on 3D reconstruction of CT images and its seepage-deformation characteristics," Energy, Elsevier, vol. 259(C).
    6. Niu, Daming & Sun, Pingchang & Ma, Lin & Zhao, Kang'an & Ding, Cong, 2023. "Porosity evolution of Minhe oil shale under an open rapid heating system and the carbon storage potentials," Renewable Energy, Elsevier, vol. 205(C), pages 783-799.
    7. Hengli Wang & Leng Tian & Kaiqiang Zhang & Zongke Liu & Can Huang & Lili Jiang & Xiaolong Chai, 2021. "How Is Ultrasonic-Assisted CO 2 EOR to Unlock Oils from Unconventional Reservoirs?," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    8. Zhao, Yuejun & Fan, Guangjuan & Song, Kaoping & Li, Yilin & Chen, Hao & Sun, He, 2021. "The experimental research for reducing the minimum miscibility pressure of carbon dioxide miscible flooding," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Biagi, James & Agarwal, Ramesh & Zhang, Zheming, 2016. "Simulation and optimization of enhanced gas recovery utilizing CO2," Energy, Elsevier, vol. 94(C), pages 78-86.
    10. Du, Shuheng, 2020. "Profound connotations of parameters on the geometric anisotropy of pores in which oil store and flow: A new detailed case study which aimed to dissect, conclude and improve the theoretical meaning and," Energy, Elsevier, vol. 211(C).
    11. Ting Chen & Laiming Song & Xueying Zhang & Yawen Yang & Huifang Fan & Bin Pan, 2023. "A Review of Mineral and Rock Wettability Changes Induced by Reaction: Implications for CO 2 Storage in Saline Reservoirs," Energies, MDPI, vol. 16(8), pages 1-17, April.
    12. Yan, Zechen & Li, Xiaofang & Zhu, Xu & Wang, Ping & Yu, Shifan & Li, Haonan & Wei, Kangxing & Li, Yan & Xue, Qingzhong, 2023. "MD-CFD simulation on the miscible displacement process of hydrocarbon gas flooding under deep reservoir conditions," Energy, Elsevier, vol. 263(PA).
    13. Hanamertani, Alvinda Sri & Ahmed, Shehzad, 2021. "Probing the role of associative polymer on scCO2-Foam strength and rheology enhancement in bulk and porous media for improving oil displacement efficiency," Energy, Elsevier, vol. 228(C).
    14. Zhang, Tong & Tang, Ming & Ma, Yankun & Zhu, Guangpei & Zhang, Qinghe & Wu, Jun & Xie, Zhizheng, 2022. "Experimental study on CO2/Water flooding mechanism and oil recovery in ultralow - Permeability sandstone with online LF-NMR," Energy, Elsevier, vol. 252(C).
    15. Park, Hyemin & Han, Jinju & Sung, Wonmo, 2015. "Effect of polymer concentration on the polymer adsorption-induced permeability reduction in low permeability reservoirs," Energy, Elsevier, vol. 84(C), pages 666-671.
    16. Yang, Renfeng & Jiang, Ruizhong & Guo, Sheng & Chen, Han & Tang, Shasha & Duan, Rui, 2021. "Analytical study on the Critical Water Cut for Water Plugging: Water cut increasing control and production enhancement," Energy, Elsevier, vol. 214(C).
    17. Rui Song & Yu Tang & Yao Wang & Ruiyang Xie & Jianjun Liu, 2022. "Pore-Scale Numerical Simulation of CO 2 –Oil Two-Phase Flow: A Multiple-Parameter Analysis Based on Phase-Field Method," Energies, MDPI, vol. 16(1), pages 1-24, December.
    18. Liang, Fachun & He, Zhennan & Meng, Jia & Zhao, Jingwen & Yu, Chao, 2023. "Effects of microfracture parameters on adaptive pumping in fractured porous media: Pore-scale simulation," Energy, Elsevier, vol. 263(PC).
    19. Yaohao Guo & Lei Zhang & Guangpu Zhu & Jun Yao & Hai Sun & Wenhui Song & Yongfei Yang & Jianlin Zhao, 2019. "A Pore-Scale Investigation of Residual Oil Distributions and Enhanced Oil Recovery Methods," Energies, MDPI, vol. 12(19), pages 1-16, September.
    20. Song, Rui & Wang, Yao & Tang, Yu & Jiajun peng, & Liu, Jianjun & Yang, Chunhe, 2022. "3D Printing of natural sandstone at pore scale and comparative analysis on micro-structure and single/two-phase flow properties," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6201-:d:898077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.