IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v259y2022ics0360544222019399.html
   My bibliography  Save this article

Semi-homogeneous model of coal based on 3D reconstruction of CT images and its seepage-deformation characteristics

Author

Listed:
  • Zhao, Li
  • Guanhua, Ni
  • Yan, Wang
  • Hehe, Jiang
  • Yongzan, Wen
  • Haoran, Dou
  • Mao, Jing

Abstract

To study the effect of isolated pores on gas seepage and coal deformation, computed tomography (CT) scanning was used to analyse the porosity and fractal characteristics of isolated pores. A geometric model of coal was then established using 3D reconstruction. Finally, a seepage-stress semi-homogeneous coupling model was established by considering the adsorption and desorption of gas. The significant difference between this model and the existing models is that the non-homogeneity of isolated pores is considered. The results show that the porosity of the isolated pores is 5.73%, accounting for 58.41% of the total pores, and the diameter is concentrated in the range of 0–10 μm. The average fractal dimension of the connected pores (1.25) is smaller than that of the isolated pores (1.35), indicating that isolated pores have a more complex structure. The gas seepage velocity is negatively correlated with the isolated pore porosity, and it varies strongly at each point of the model, with a maximum and minimum of 5.08 m/s and 1.45 × 10−4 m/s, respectively. The inhomogeneous distribution of isolated pores led to a differential deformation of the model. The total displacement of the slices varies from 13,550 μm to 14,300 μm and decreases with increasing isolated pore porosity and fractal dimension. Both low fractal dimension and low isolated pore porosity increase the deformation.

Suggested Citation

  • Zhao, Li & Guanhua, Ni & Yan, Wang & Hehe, Jiang & Yongzan, Wen & Haoran, Dou & Mao, Jing, 2022. "Semi-homogeneous model of coal based on 3D reconstruction of CT images and its seepage-deformation characteristics," Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222019399
    DOI: 10.1016/j.energy.2022.125044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222019399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lan, Wenjian & Wang, Hanxiang & Liu, Qihu & Zhang, Xin & Chen, Jingkai & Li, Ziling & Feng, Kun & Chen, Shengshan, 2021. "Investigation on the microwave heating technology for coalbed methane recovery," Energy, Elsevier, vol. 237(C).
    2. Kong, Xiangguo & He, Di & Liu, Xianfeng & Wang, Enyuan & Li, Shugang & Liu, Ting & Ji, Pengfei & Deng, Daiyu & Yang, Songrui, 2022. "Strain characteristics and energy dissipation laws of gas-bearing coal during impact fracture process," Energy, Elsevier, vol. 242(C).
    3. Fan, Chaojun & Elsworth, Derek & Li, Sheng & Zhou, Lijun & Yang, Zhenhua & Song, Yu, 2019. "Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery," Energy, Elsevier, vol. 173(C), pages 1054-1077.
    4. Yingfeng Sun & Yixin Zhao & Liang Yuan, 2020. "Impact of coal composition and pore structure on gas adsorption: a study based on a synchrotron radiation facility," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(1), pages 116-129, February.
    5. Gunde, Akshay C. & Bera, Bijoyendra & Mitra, Sushanta K., 2010. "Investigation of water and CO2 (carbon dioxide) flooding using micro-CT (micro-computed tomography) images of Berea sandstone core using finite element simulations," Energy, Elsevier, vol. 35(12), pages 5209-5216.
    6. Hu, Yuhao & Liu, Guannan & Luo, Ning & Gao, Feng & Yue, Fengtian & Gao, Tao, 2022. "Multi-field coupling deformation of rock and multi-scale flow of gas in shale gas extraction," Energy, Elsevier, vol. 238(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nie, Bin & Sun, Sijia, 2023. "Thermal recovery of coalbed methane: Modeling of heat and mass transfer in wellbores," Energy, Elsevier, vol. 263(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Haifei & Li, Botao & Li, Shugang & Qin, Lei & Wei, Zongyong & Wang, Pei & Luo, Rongwei, 2023. "Numerical investigation of temperature distribution and thermal damage of heterogeneous coal under liquid nitrogen freezing," Energy, Elsevier, vol. 267(C).
    2. Zhao, Changxin & Cheng, Yuanping & Li, Wei & Wang, Liang & Zhang, Kaizhong & Wang, Chenghao, 2023. "Critical stress related to coalbed methane migration pattern: Model development and experimental validation," Energy, Elsevier, vol. 284(C).
    3. Dongming Wang & Yankun Ma & Xiaofei Liu & Dexing Li & Quanlin Liu & Hengze Yang & Xuelong Li, 2024. "Improving Mining Sustainability and Safety by Monitoring Precursors of Catastrophic Failures in Loaded Granite: An Experimental Study of Acoustic Emission and Electromagnetic Radiation," Sustainability, MDPI, vol. 16(3), pages 1-16, January.
    4. Fan, Lurong & Xu, Jiuping, 2020. "Authority–enterprise equilibrium based mixed subsidy mechanism for carbon reduction and energy utilization in the coalbed methane industry," Energy Policy, Elsevier, vol. 147(C).
    5. Cai, Mingyu & Su, Yuliang & Elsworth, Derek & Li, Lei & Fan, Liyao, 2021. "Hydro-mechanical-chemical modeling of sub-nanopore capillary-confinement on CO2-CCUS-EOR," Energy, Elsevier, vol. 225(C).
    6. Ziwen Li & Hongjin Yu & Yansong Bai, 2022. "Numerical Simulation of CO 2 -ECBM Based on Multi-Physical Field Coupling Model," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    7. Yang, Min & Liu, Qi & Zhao, Hongsheng & Li, Ziqiang & Liu, Bing & Li, Xingdong & Meng, Fanyong, 2014. "Automatic X-ray inspection for escaped coated particles in spherical fuel elements of high temperature gas-cooled reactor," Energy, Elsevier, vol. 68(C), pages 385-398.
    8. Yue, Jiwei & Ma, Yankun & Wang, Zhaofeng & Zhang, Xi & Wang, Long & Shen, Xiaojing, 2023. "Characteristics of water migration during spontaneous imbibition in anisotropic coal," Energy, Elsevier, vol. 263(PE).
    9. Wenjie Xu & Xigui Zheng & Cancan Liu & Peng Li & Boyang Li & Kundai Michael Shayanowako & Jiyu Wang & Xiaowei Guo & Guowei Lai, 2022. "Numerical Simulation Study of High-Pressure Air Injection to Promote Gas Drainage," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    10. Li, Yujie & Zhai, Cheng & Xu, Jizhao & Yu, Xu & Sun, Yong & Cong, Yuzhou & Tang, Wei & Zheng, Yangfeng, 2023. "Effects of steam treatment on the internal moisture and physicochemical structure of coal and their implications for coalbed methane recovery," Energy, Elsevier, vol. 270(C).
    11. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    12. Wang, Kai & Wang, Yanhai & Xu, Chao & Guo, Haijun & Xu, Zhiyuan & Liu, Yifu & Dong, Huzi & Ju, Yang, 2023. "Modeling of multi-field gas desorption-diffusion in coal: A new insight into the bidisperse model," Energy, Elsevier, vol. 267(C).
    13. Yang, Dingding & Peng, Kai & Zheng, Yu & Chen, Yujia & Zheng, Juan & Wang, Man & Chen, Si, 2023. "Study on the characteristics of coal and gas outburst hazard under the influence of high formation temperature in deep mines," Energy, Elsevier, vol. 268(C).
    14. Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
    15. Huang, Xianfu & Zhao, Ya-Pu, 2023. "Evolution of pore structure and adsorption-desorption in oil shale formation rocks after compression," Energy, Elsevier, vol. 278(PA).
    16. Liu, Zhengdong & Lin, Xiaosong & Zhu, Wancheng & Hu, Ze & Hao, Congmeng & Su, Weiwei & Bai, Gang, 2023. "Effects of coal permeability rebound and recovery phenomenon on CO2 storage capacity under different coalbed temperature conditions during CO2-ECBM process," Energy, Elsevier, vol. 284(C).
    17. Zhou, Lijun & Zhou, Xihua & Fan, Chaojun & Bai, Gang, 2022. "Coal permeability evolution triggered by variable injection parameters during gas mixture enhanced methane recovery," Energy, Elsevier, vol. 252(C).
    18. Hengli Wang & Leng Tian & Kaiqiang Zhang & Zongke Liu & Can Huang & Lili Jiang & Xiaolong Chai, 2021. "How Is Ultrasonic-Assisted CO 2 EOR to Unlock Oils from Unconventional Reservoirs?," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    19. Zhao, Yuejun & Fan, Guangjuan & Song, Kaoping & Li, Yilin & Chen, Hao & Sun, He, 2021. "The experimental research for reducing the minimum miscibility pressure of carbon dioxide miscible flooding," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Zhang, Tong & Tang, Ming & Ma, Yankun & Zhu, Guangpei & Zhang, Qinghe & Wu, Jun & Xie, Zhizheng, 2022. "Experimental study on CO2/Water flooding mechanism and oil recovery in ultralow - Permeability sandstone with online LF-NMR," Energy, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222019399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.