IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v189y2024ip1s0960077924012372.html
   My bibliography  Save this article

Relationship between micro-pores fractal characteristics about NMR T2 spectra and macro cracks fractal laws based on box dimension method of coal under impact load from energy dissipation theory

Author

Listed:
  • Li, Shugang
  • He, Di
  • Kong, Xiangguo
  • Lin, Haifei
  • Ma, Yankun
  • Li, Xuelong
  • Zhan, Mengzhao
  • Ji, Pengfei
  • Yang, Songrui

Abstract

The development and utilization of deep formation resources are easily disrupted by impact loads. To investigate what effect of impact on the pore structure and energy evolution of coal, the dynamic compression tests were performed by using the Split Hopkinson Pressure Bar (SHPB) test system. The fractal characteristics of macro cracks were analyzed by box dimension, the micro-pores structure and fractal features of coal samples were studied about nuclear magnetic resonance (NMR), which clarified the intrinsic relationship between fracture structure characteristics and energy dissipation. The results showed that with increasing impact velocity from 1.27 m/s to 4.90 m/s, the dynamic strength and peak strain increased by 85.11 % and 53.76 %, respectively. The fractal dimension of the cracks grew by 26.87 %, and the fractal dimension of pore network and full aperture decreases gradually. With increasing impact velocity, the fracture dissipation energy and energy dissipation rate of coal samples increase exponentially. As the energy dissipation rate increases, the cracks fractal increases in a quadratic function relationship and the pores fractal decreases continuously. Low-velocity impacts induce dislocation plugging between coal matrix crystals, while impact effect causes more dislocations to form stress concentrations at pore tips. When the energy accumulation reaches its maximum value, the content of mesopores and macropores together with the pore connectivity increases. Instantaneous disturbance creates more macroscopic fracture surfaces in the coal, resulting in large-scale fracture instability. This research findings will provide some theoretical foundations to understand the formation mechanism of dynamic disasters in deep mines.

Suggested Citation

  • Li, Shugang & He, Di & Kong, Xiangguo & Lin, Haifei & Ma, Yankun & Li, Xuelong & Zhan, Mengzhao & Ji, Pengfei & Yang, Songrui, 2024. "Relationship between micro-pores fractal characteristics about NMR T2 spectra and macro cracks fractal laws based on box dimension method of coal under impact load from energy dissipation theory," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
  • Handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012372
    DOI: 10.1016/j.chaos.2024.115685
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924012372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115685?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ji, Pengfei & Lin, Haifei & Kong, Xiangguo & Li, Shugang, 2024. "Coal deformation characteristics during methane displacement by pulsed nitrogen injection: New method of using pulsed energy to improve coal permeability," Energy, Elsevier, vol. 308(C).
    2. Liu, Xiaofei & Cai, Duke & Gu, Zhoujie & Zhang, Siqing & Zhou, Xin & Gao, Ang, 2024. "Analysis of progressive damage and energy consumption characteristics of gas-bearing coal under cyclic dynamic loads," Energy, Elsevier, vol. 306(C).
    3. Junjun Feng & Enyuan Wang & Qisong Huang & Houcheng Ding & Long Dang, 2021. "Time-Varying Multifractal Analysis Of Crack Propagation And Internal Fracture Process Of Coal Under Dynamic Loading," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(04), pages 1-24, June.
    4. Kong, Xiangguo & He, Di & Liu, Xianfeng & Wang, Enyuan & Li, Shugang & Liu, Ting & Ji, Pengfei & Deng, Daiyu & Yang, Songrui, 2022. "Strain characteristics and energy dissipation laws of gas-bearing coal during impact fracture process," Energy, Elsevier, vol. 242(C).
    5. Lal, Rattan & Chandra, Subhash & Prajapati, Ajay, 2024. "Fractal surfaces in Lebesgue spaces with respect to fractal measures and associated fractal operators," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    6. Pan, Jienan & Du, Xuetian & Wang, Xianglong & Hou, Quanlin & Wang, Zhenzhi & Yi, Jiale & Li, Meng, 2024. "Pore and permeability changes in coal induced by true triaxial supercritical carbon dioxide fracturing based on low-field nuclear magnetic resonance," Energy, Elsevier, vol. 286(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongming Wang & Yankun Ma & Xiaofei Liu & Dexing Li & Quanlin Liu & Hengze Yang & Xuelong Li, 2024. "Improving Mining Sustainability and Safety by Monitoring Precursors of Catastrophic Failures in Loaded Granite: An Experimental Study of Acoustic Emission and Electromagnetic Radiation," Sustainability, MDPI, vol. 16(3), pages 1-16, January.
    2. Qin, Bo & Zhang, Ying, 2024. "Comprehensive analysis of the mechanism of sensitivity to initial conditions and fractal basins of attraction in a novel variable-distance magnetic pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    3. Kumar, Anuj & Verma, Shubham Kumar & Boulaaras, Salah Mahmoud, 2024. "On α-fractal functions and their applications to analyzing the S&P BSE Sensex in India," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    4. Yue, Jiwei & Ma, Yankun & Wang, Zhaofeng & Zhang, Xi & Wang, Long & Shen, Xiaojing, 2023. "Characteristics of water migration during spontaneous imbibition in anisotropic coal," Energy, Elsevier, vol. 263(PE).
    5. Zhao, Li & Guanhua, Ni & Yan, Wang & Hehe, Jiang & Yongzan, Wen & Haoran, Dou & Mao, Jing, 2022. "Semi-homogeneous model of coal based on 3D reconstruction of CT images and its seepage-deformation characteristics," Energy, Elsevier, vol. 259(C).
    6. Yang, Dingding & Peng, Kai & Zheng, Yu & Chen, Yujia & Zheng, Juan & Wang, Man & Chen, Si, 2023. "Study on the characteristics of coal and gas outburst hazard under the influence of high formation temperature in deep mines," Energy, Elsevier, vol. 268(C).
    7. Huang, Laisheng & Li, Bo & Li, Chao & Wu, Bing & Wang, Jingxin, 2024. "Research on anisotropic characteristics and energy damage evolution mechanism of bedding coal under uniaxial compression," Energy, Elsevier, vol. 301(C).
    8. Bin Miao & Xinyu Wang & Hongru Li, 2022. "Quantitative Analysis of Infrared Thermal Images in Rock Fractures Based on Multi-Fractal Theory," Sustainability, MDPI, vol. 14(11), pages 1-11, May.
    9. Xuming Zhou & Haotian Li & Xuelong Li & Jianwei Wang & Jingjing Meng & Mingze Li & Chengwei Mei, 2022. "Research on Gob-Side Entry Retaining Mining of Fully Mechanized Working Face in Steeply Inclined Coal Seam: A Case in Xinqiang Coal Mine," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    10. Liu, Xiaofei & Cai, Duke & Gu, Zhoujie & Zhang, Siqing & Zhou, Xin & Gao, Ang, 2024. "Analysis of progressive damage and energy consumption characteristics of gas-bearing coal under cyclic dynamic loads," Energy, Elsevier, vol. 306(C).
    11. Du, Xuanhong & Xue, Junhua & Shi, Yu & Cao, Chen-Rui & Shu, Chi-Min & Li, Kehan & Ma, Qian & Zhan, Keliang & Chen, Zhiheng & Wang, Shulou, 2023. "Triaxial mechanical behaviour and energy conversion characteristics of deep coal bodies under confining pressure," Energy, Elsevier, vol. 266(C).
    12. Lin, Haifei & Li, Botao & Li, Shugang & Qin, Lei & Wei, Zongyong & Wang, Pei & Luo, Rongwei, 2023. "Numerical investigation of temperature distribution and thermal damage of heterogeneous coal under liquid nitrogen freezing," Energy, Elsevier, vol. 267(C).
    13. Liu, Shumin & Sun, Haitao & Zhang, Dongming & Yang, Kun & Li, Xuelong & Wang, Dengke & Li, Yaning, 2023. "Experimental study of effect of liquid nitrogen cold soaking on coal pore structure and fractal characteristics," Energy, Elsevier, vol. 275(C).
    14. Changkui Lei & Xueqiang Shi & Lijuan Jiang & Cunbao Deng & Jun Nian & Yabin Gao, 2023. "Study on the Effect of External Air Supply and Temperature Control on Coal Spontaneous Combustion Characteristics," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    15. Zhao, Changxin & Cheng, Yuanping & Li, Wei & Wang, Liang & Zhang, Kaizhong & Wang, Chenghao, 2023. "Critical stress related to coalbed methane migration pattern: Model development and experimental validation," Energy, Elsevier, vol. 284(C).
    16. Dexing Li & Enyuan Wang & Jianhua Yue & Manman Li & Li Li & Dongming Wang & Wei Liang, 2023. "Characteristics of Pressure Stimulated Current and Damage Evolution of Granite under Progressive Uniaxial Loading," Sustainability, MDPI, vol. 15(19), pages 1-18, October.
    17. Yu, Binyan & Liang, Yongshun, 2024. "On the dimensional connection between a class of real number sequences and local fractal functions with a single unbounded variation point," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:189:y:2024:i:p1:s0960077924012372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.