IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i19p3732-d272167.html
   My bibliography  Save this article

A Pore-Scale Investigation of Residual Oil Distributions and Enhanced Oil Recovery Methods

Author

Listed:
  • Yaohao Guo

    (Research Centre of Multiphase Flow in Porous Media, China University of Petroleum (East China), Qingdao 266580, China)

  • Lei Zhang

    (Research Centre of Multiphase Flow in Porous Media, China University of Petroleum (East China), Qingdao 266580, China)

  • Guangpu Zhu

    (Research Centre of Multiphase Flow in Porous Media, China University of Petroleum (East China), Qingdao 266580, China)

  • Jun Yao

    (Research Centre of Multiphase Flow in Porous Media, China University of Petroleum (East China), Qingdao 266580, China)

  • Hai Sun

    (Research Centre of Multiphase Flow in Porous Media, China University of Petroleum (East China), Qingdao 266580, China)

  • Wenhui Song

    (Research Centre of Multiphase Flow in Porous Media, China University of Petroleum (East China), Qingdao 266580, China)

  • Yongfei Yang

    (Research Centre of Multiphase Flow in Porous Media, China University of Petroleum (East China), Qingdao 266580, China)

  • Jianlin Zhao

    (Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland)

Abstract

Water flooding is an economic method commonly used in secondary recovery, but a large quantity of crude oil is still trapped in reservoirs after water flooding. A deep understanding of the distribution of residual oil is essential for the subsequent development of water flooding. In this study, a pore-scale model is developed to study the formation process and distribution characteristics of residual oil. The Navier–Stokes equation coupled with a phase field method is employed to describe the flooding process and track the interface of fluids. The results show a significant difference in residual oil distribution at different wetting conditions. The difference is also reflected in the oil recovery and water cut curves. Much more oil is displaced in water-wet porous media than oil-wet porous media after water breakthrough. Furthermore, enhanced oil recovery (EOR) mechanisms of both surfactant and polymer flooding are studied, and the effect of operation times for different EOR methods are analyzed. The surfactant flooding not only improves oil displacement efficiency, but also increases microscale sweep efficiency by reducing the entry pressure of micropores. Polymer weakens the effect of capillary force by increasing the viscous force, which leads to an improvement in sweep efficiency. The injection time of the surfactant has an important impact on the field development due to the formation of predominant pathway, but the EOR effect of polymer flooding does not have a similar correlation with the operation times. Results from this study can provide theoretical guidance for the appropriate design of EOR methods such as the application of surfactant and polymer flooding.

Suggested Citation

  • Yaohao Guo & Lei Zhang & Guangpu Zhu & Jun Yao & Hai Sun & Wenhui Song & Yongfei Yang & Jianlin Zhao, 2019. "A Pore-Scale Investigation of Residual Oil Distributions and Enhanced Oil Recovery Methods," Energies, MDPI, vol. 12(19), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3732-:d:272167
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/19/3732/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/19/3732/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei Zhang & Wenlong Jing & Yongfei Yang & Hainan Yang & Yaohao Guo & Hai Sun & Jianlin Zhao & Jun Yao, 2019. "The Investigation of Permeability Calculation Using Digital Core Simulation Technology," Energies, MDPI, vol. 12(17), pages 1-9, August.
    2. Yongfei Yang & Zhihui Liu & Jun Yao & Lei Zhang & Jingsheng Ma & S. Hossein Hejazi & Linda Luquot & Toussaint Dono Ngarta, 2018. "Flow Simulation of Artificially Induced Microfractures Using Digital Rock and Lattice Boltzmann Methods," Energies, MDPI, vol. 11(8), pages 1-17, August.
    3. Vladimir Alvarado & Eduardo Manrique, 2010. "Enhanced Oil Recovery: An Update Review," Energies, MDPI, vol. 3(9), pages 1-47, August.
    4. Jianchao Cai & Zhien Zhang & Qinjun Kang & Harpreet Singh, 2019. "Recent Advances in Flow and Transport Properties of Unconventional Reservoirs," Energies, MDPI, vol. 12(10), pages 1-5, May.
    5. Gunde, Akshay C. & Bera, Bijoyendra & Mitra, Sushanta K., 2010. "Investigation of water and CO2 (carbon dioxide) flooding using micro-CT (micro-computed tomography) images of Berea sandstone core using finite element simulations," Energy, Elsevier, vol. 35(12), pages 5209-5216.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang, Yujia & Yang, Erlong & Guo, Songlin & Cui, Changyu & Zhou, Congcong, 2022. "Study on micro remaining oil distribution of polymer flooding in Class-II B oil layer of Daqing Oilfield," Energy, Elsevier, vol. 254(PC).
    2. Qiong Wang & Xiuwei Liu & Lixin Meng & Ruizhong Jiang & Haijun Fan, 2020. "The Numerical Simulation Study of the Oil–Water Seepage Behavior Dependent on the Polymer Concentration in Polymer Flooding," Energies, MDPI, vol. 13(19), pages 1-19, October.
    3. Tao Ning & Meng Xi & Bingtao Hu & Le Wang & Chuanqing Huang & Junwei Su, 2021. "Effect of Viscosity Action and Capillarity on Pore-Scale Oil–Water Flowing Behaviors in a Low-Permeability Sandstone Waterflood," Energies, MDPI, vol. 14(24), pages 1-30, December.
    4. Tomasz A. Prokop & Grzegorz Brus & Janusz S. Szmyd, 2021. "Microstructure Evolution in a Solid Oxide Fuel Cell Stack Quantified with Interfacial Free Energy," Energies, MDPI, vol. 14(12), pages 1-14, June.
    5. Hai Sun & Lian Duan & Lei Liu & Weipeng Fan & Dongyan Fan & Jun Yao & Lei Zhang & Yongfei Yang & Jianlin Zhao, 2019. "The Influence of Micro-Fractures on the Flow in Tight Oil Reservoirs Based on Pore-Network Models," Energies, MDPI, vol. 12(21), pages 1-17, October.
    6. Marcin Kremieniewski, 2022. "Improving the Efficiency of Oil Recovery in Research and Development," Energies, MDPI, vol. 15(12), pages 1-7, June.
    7. Guo, Yaohao & Liu, Fen & Qiu, Junjie & Xu, Zhi & Bao, Bo, 2022. "Microscopic transport and phase behaviors of CO2 injection in heterogeneous formations using microfluidics," Energy, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai Sun & Lian Duan & Lei Liu & Weipeng Fan & Dongyan Fan & Jun Yao & Lei Zhang & Yongfei Yang & Jianlin Zhao, 2019. "The Influence of Micro-Fractures on the Flow in Tight Oil Reservoirs Based on Pore-Network Models," Energies, MDPI, vol. 12(21), pages 1-17, October.
    2. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    3. Xiankang Xin & Yiqiang Li & Gaoming Yu & Weiying Wang & Zhongzhi Zhang & Maolin Zhang & Wenli Ke & Debin Kong & Keliu Wu & Zhangxin Chen, 2017. "Non-Newtonian Flow Characteristics of Heavy Oil in the Bohai Bay Oilfield: Experimental and Simulation Studies," Energies, MDPI, vol. 10(11), pages 1-25, October.
    4. Samin Raziperchikolaee & Ashwin Pasumarti & Srikanta Mishra, 2020. "The effect of natural fractures on CO2 storage performance and oil recovery from CO2 and WAG injection in an Appalachian basin reservoir," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1098-1114, October.
    5. Zhihui Liu & Yongfei Yang & Yingwen Li & Jiaxue Li, 2021. "In Situ Deformation Analysis of a Fracture in Coal under Cyclic Loading and Unloading," Energies, MDPI, vol. 14(20), pages 1-16, October.
    6. Yang, Min & Liu, Qi & Zhao, Hongsheng & Li, Ziqiang & Liu, Bing & Li, Xingdong & Meng, Fanyong, 2014. "Automatic X-ray inspection for escaped coated particles in spherical fuel elements of high temperature gas-cooled reactor," Energy, Elsevier, vol. 68(C), pages 385-398.
    7. Cees J. L. Willems & Chaojie Cheng & Sean M. Watson & James Minto & Aislinn Williams & David Walls & Harald Milsch & Neil M. Burnside & Rob Westaway, 2021. "Permeability and Mineralogy of the Újfalu Formation, Hungary, from Production Tests and Experimental Rock Characterization: Implications for Geothermal Heat Projects," Energies, MDPI, vol. 14(14), pages 1-25, July.
    8. Welkenhuysen, Kris & Rupert, Jort & Compernolle, Tine & Ramirez, Andrea & Swennen, Rudy & Piessens, Kris, 2017. "Considering economic and geological uncertainty in the simulation of realistic investment decisions for CO2-EOR projects in the North Sea," Applied Energy, Elsevier, vol. 185(P1), pages 745-761.
    9. Rui Dias & Paulo Alexandre & Nuno Teixeira & Mariana Chambino, 2023. "Clean Energy Stocks: Resilient Safe Havens in the Volatility of Dirty Cryptocurrencies," Energies, MDPI, vol. 16(13), pages 1-24, July.
    10. Adedapo N. Awolayo & Hemanta K. Sarma & Long X. Nghiem, 2018. "Brine-Dependent Recovery Processes in Carbonate and Sandstone Petroleum Reservoirs: Review of Laboratory-Field Studies, Interfacial Mechanisms and Modeling Attempts," Energies, MDPI, vol. 11(11), pages 1-66, November.
    11. Zhao, Li & Guanhua, Ni & Yan, Wang & Hehe, Jiang & Yongzan, Wen & Haoran, Dou & Mao, Jing, 2022. "Semi-homogeneous model of coal based on 3D reconstruction of CT images and its seepage-deformation characteristics," Energy, Elsevier, vol. 259(C).
    12. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    13. Amjed M. Hassan & Mohamed A. Mahmoud & Abdulaziz A. Al-Majed & Ayman R. Al-Nakhli & Mohammed A. Bataweel & Salaheldin Elkatatny, 2019. "Mitigation of Condensate Banking Using Thermochemical Treatment: Experimental and Analytical Study," Energies, MDPI, vol. 12(5), pages 1-12, February.
    14. Michele Fioretti & Alessandro Iaria & Aljoscha Janssen & Robert K Perrons & Clément Mazet-Sonilhac, 2022. "Innovation Begets Innovation and Concentration: the Case of Upstream Oil & Gas in the North Sea," Working Papers hal-03791971, HAL.
    15. Hengli Wang & Leng Tian & Kaiqiang Zhang & Zongke Liu & Can Huang & Lili Jiang & Xiaolong Chai, 2021. "How Is Ultrasonic-Assisted CO 2 EOR to Unlock Oils from Unconventional Reservoirs?," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    16. Zhao, Yuejun & Fan, Guangjuan & Song, Kaoping & Li, Yilin & Chen, Hao & Sun, He, 2021. "The experimental research for reducing the minimum miscibility pressure of carbon dioxide miscible flooding," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Laura Osma & Luis García & Romel Pérez & Carolina Barbosa & Jesús Botett & Jorge Sandoval & Eduardo Manrique, 2019. "Benefit–Cost and Energy Efficiency Index to Support the Screening of Hybrid Cyclic Steam Stimulation Methods," Energies, MDPI, vol. 12(24), pages 1-16, December.
    18. Xia Yan & Zhaoqin Huang & Qi Zhang & Dongyan Fan & Jun Yao, 2020. "Numerical Investigation of the Effect of Partially Propped Fracture Closure on Gas Production in Fractured Shale Reservoirs," Energies, MDPI, vol. 13(20), pages 1, October.
    19. Syed, Fahad Iqbal & Muther, Temoor & Dahaghi, Amirmasoud Kalantari & Negahban, Shahin, 2022. "Low-Rank Tensors Applications for Dimensionality Reduction of Complex Hydrocarbon Reservoirs," Energy, Elsevier, vol. 244(PA).
    20. Sayed Ameenuddin Irfan & Afza Shafie & Noorhana Yahya & Nooraini Zainuddin, 2019. "Mathematical Modeling and Simulation of Nanoparticle-Assisted Enhanced Oil Recovery—A Review," Energies, MDPI, vol. 12(8), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:19:p:3732-:d:272167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.