IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3020-d180172.html
   My bibliography  Save this article

Brine-Dependent Recovery Processes in Carbonate and Sandstone Petroleum Reservoirs: Review of Laboratory-Field Studies, Interfacial Mechanisms and Modeling Attempts

Author

Listed:
  • Adedapo N. Awolayo

    (Chemical and Petroleum Engineering Department, University of Calgary, Calgary, AB T2N 1N4, Canada)

  • Hemanta K. Sarma

    (Chemical and Petroleum Engineering Department, University of Calgary, Calgary, AB T2N 1N4, Canada)

  • Long X. Nghiem

    (Chemical and Petroleum Engineering Department, University of Calgary, Calgary, AB T2N 1N4, Canada
    Computer Modelling Group Ltd., Calgary, AB T2L 2M1, Canada)

Abstract

Brine-dependent recovery, which involves injected water ionic composition and strength, has seen much global research efforts in the past two decades because of its benefits over other oil recovery methods. Several studies, ranging from lab coreflood experiments to field trials, indicate the potential of recovering additional oil in sandstone and carbonate reservoirs. Sandstone and carbonate rocks are composed of completely different minerals, with varying degree of complexity and heterogeneity, but wettability alteration has been widely considered as the consequence rather than the cause of brine-dependent recovery. However, the probable cause appears to be as a result of the combination of several proposed mechanisms that relate the wettability changes to the improved recovery. This paper provides a comprehensive review on laboratory and field observations, descriptions of underlying mechanisms and their validity, the complexity of the oil-brine-rock interactions, modeling works, and comparison between sandstone and carbonate rocks. The improvement in oil recovery varies depending on brine content (connate and injected), rock mineralogy, oil type and structure, and temperature. The brine ionic strength and composition modification are the two major frontlines that have been well-exploited, while further areas of investigation are highlighted to speed up the interpretation and prediction of the process efficiency.

Suggested Citation

  • Adedapo N. Awolayo & Hemanta K. Sarma & Long X. Nghiem, 2018. "Brine-Dependent Recovery Processes in Carbonate and Sandstone Petroleum Reservoirs: Review of Laboratory-Field Studies, Interfacial Mechanisms and Modeling Attempts," Energies, MDPI, vol. 11(11), pages 1-66, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3020-:d:180172
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3020/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3020/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vladimir Alvarado & Eduardo Manrique, 2010. "Enhanced Oil Recovery: An Update Review," Energies, MDPI, vol. 3(9), pages 1-47, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paras H. Gopani & Navpreet Singh & Hemanta K. Sarma & Padmaja Mattey & Vivek R. Srivastava, 2021. "Role of Monovalent and Divalent Ions in Low-Salinity Water Flood in Carbonate Reservoirs: An Integrated Analysis through Zeta Potentiometric and Simulation Studies," Energies, MDPI, vol. 14(3), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huoxin Luan & Zhaohui Zhou & Chongjun Xu & Lei Bai & Xiaoguang Wang & Lu Han & Qun Zhang & Gen Li, 2022. "Study on the Synergistic Effects between Petroleum Sulfonate and a Nonionic–Anionic Surfactant for Enhanced Oil Recovery," Energies, MDPI, vol. 15(3), pages 1-12, February.
    2. Xiankang Xin & Yiqiang Li & Gaoming Yu & Weiying Wang & Zhongzhi Zhang & Maolin Zhang & Wenli Ke & Debin Kong & Keliu Wu & Zhangxin Chen, 2017. "Non-Newtonian Flow Characteristics of Heavy Oil in the Bohai Bay Oilfield: Experimental and Simulation Studies," Energies, MDPI, vol. 10(11), pages 1-25, October.
    3. Samin Raziperchikolaee & Ashwin Pasumarti & Srikanta Mishra, 2020. "The effect of natural fractures on CO2 storage performance and oil recovery from CO2 and WAG injection in an Appalachian basin reservoir," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1098-1114, October.
    4. Jun Pu & Xuejie Qin & Feifei Gou & Wenchao Fang & Fengjie Peng & Runxi Wang & Zhaoli Guo, 2018. "Molecular Modeling of CO 2 and n -Octane in Solubility Process and α -Quartz Nanoslit," Energies, MDPI, vol. 11(11), pages 1-11, November.
    5. Welkenhuysen, Kris & Rupert, Jort & Compernolle, Tine & Ramirez, Andrea & Swennen, Rudy & Piessens, Kris, 2017. "Considering economic and geological uncertainty in the simulation of realistic investment decisions for CO2-EOR projects in the North Sea," Applied Energy, Elsevier, vol. 185(P1), pages 745-761.
    6. Rui Dias & Paulo Alexandre & Nuno Teixeira & Mariana Chambino, 2023. "Clean Energy Stocks: Resilient Safe Havens in the Volatility of Dirty Cryptocurrencies," Energies, MDPI, vol. 16(13), pages 1-24, July.
    7. Mandadige Samintha Anne Perera & Ranjith Pathegama Gamage & Tharaka Dilanka Rathnaweera & Ashani Savinda Ranathunga & Andrew Koay & Xavier Choi, 2016. "A Review of CO 2 -Enhanced Oil Recovery with a Simulated Sensitivity Analysis," Energies, MDPI, vol. 9(7), pages 1-22, June.
    8. Li, Yujie & Zhai, Cheng & Xu, Jizhao & Yu, Xu & Sun, Yong & Cong, Yuzhou & Tang, Wei & Zheng, Yangfeng, 2023. "Effects of steam treatment on the internal moisture and physicochemical structure of coal and their implications for coalbed methane recovery," Energy, Elsevier, vol. 270(C).
    9. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    10. Calderón, Andrés J. & Pekney, Natalie J., 2020. "Optimization of enhanced oil recovery operations in unconventional reservoirs," Applied Energy, Elsevier, vol. 258(C).
    11. Michele Fioretti & Alessandro Iaria & Aljoscha Janssen & Robert K Perrons & Clément Mazet-Sonilhac, 2022. "Innovation Begets Innovation and Concentration: the Case of Upstream Oil & Gas in the North Sea," SciencePo Working papers hal-03791971, HAL.
    12. Li, Jiawei & Yuan, Wanju & Zhang, Yin & Cherubini, Claudia & Scheuermann, Alexander & Galindo Torres, Sergio Andres & Li, Ling, 2020. "Numerical investigations of CO2 and N2 miscible flow as the working fluid in enhanced geothermal systems," Energy, Elsevier, vol. 206(C).
    13. Deli Jia & Jiqun Zhang & Yufei Sun & Suling Wang & Sheng Gao & Meixia Qiao & Yanchun Li & Ruyi Qu, 2023. "Collaboration between Oil Development and Water/Power Consumption in High-Water-Cut Oilfields," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    14. Amjed M. Hassan & Mohamed A. Mahmoud & Abdulaziz A. Al-Majed & Ayman R. Al-Nakhli & Mohammed A. Bataweel & Salaheldin Elkatatny, 2019. "Mitigation of Condensate Banking Using Thermochemical Treatment: Experimental and Analytical Study," Energies, MDPI, vol. 12(5), pages 1-12, February.
    15. Laura Osma & Luis García & Romel Pérez & Carolina Barbosa & Jesús Botett & Jorge Sandoval & Eduardo Manrique, 2019. "Benefit–Cost and Energy Efficiency Index to Support the Screening of Hybrid Cyclic Steam Stimulation Methods," Energies, MDPI, vol. 12(24), pages 1-16, December.
    16. Sameer Al-Hajri & Syed M. Mahmood & Hesham Abdulelah & Saeed Akbari, 2018. "An Overview on Polymer Retention in Porous Media," Energies, MDPI, vol. 11(10), pages 1-19, October.
    17. Sayed Ameenuddin Irfan & Afza Shafie & Noorhana Yahya & Nooraini Zainuddin, 2019. "Mathematical Modeling and Simulation of Nanoparticle-Assisted Enhanced Oil Recovery—A Review," Energies, MDPI, vol. 12(8), pages 1-19, April.
    18. Bai, Mingxing & Zhang, Zhichao & Cui, Xiaona & Song, Kaoping, 2017. "Studies of injection parameters for chemical flooding in carbonate reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1464-1471.
    19. Simon P. Philbin, 2020. "Critical Analysis and Evaluation of the Technology Pathways for Carbon Capture and Utilization," Clean Technol., MDPI, vol. 2(4), pages 1-21, December.
    20. Chao Ma & Xingyu Liu & Longlong Xie & Yan Chen & Wendong Ren & Wen Gu & Minghua Zhang & Huili Zhou, 2021. "Synthesis and Molecular Dynamics Simulation of Amphiphilic Low Molecular Weight Polymer Viscosity Reducer for Heavy Oil Cold Recovery," Energies, MDPI, vol. 14(21), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3020-:d:180172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.