IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1575-d225919.html
   My bibliography  Save this article

Mathematical Modeling and Simulation of Nanoparticle-Assisted Enhanced Oil Recovery—A Review

Author

Listed:
  • Sayed Ameenuddin Irfan

    (Centre of Advanced Electromagnetics, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Malaysia)

  • Afza Shafie

    (Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Malaysia)

  • Noorhana Yahya

    (Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Malaysia)

  • Nooraini Zainuddin

    (Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Malaysia)

Abstract

In the last two decades, nanotechnology has flourished due to its vast number of applications in many fields such as drug delivery, oil and gas, and thermal applications, like cooling and air-conditioning. This study focuses on the applications of nanoparticles/nanofluids in the Enhanced Oil Recovery (EOR) process to increase oil recovery efficiency. To understand the nanoparticle-assisted EOR process, the first step is to understand the flow characteristics of nanoparticles in porous media, including entrapment and release in the pores and the behavior of nanoparticles under high temperatures, pressures, and salinity levels and in the presence of external electric and magnetic fields. Also, the process looks at the roles of various pore distributions during their application as EOR agents. The experimental approaches are not only time consuming, but they are also cumbersome and expensive. Hence, the mathematical models could help to facilitate the understanding of the transport and interaction of nanofluids in a reservoir and how such processes can be optimized to get maximum oil recovery and, in turn, reduce the production cost. This paper reviews and critically analyzes the latest developments in mathematical modeling and simulation techniques that have been reported for nanofluid-assisted EOR. One section is dedicated to discussing the challenges ahead, as well as the research gaps in the modeling approach to help the readers to also contribute to further enlightening the modeling nanofluid-assisted EOR process.

Suggested Citation

  • Sayed Ameenuddin Irfan & Afza Shafie & Noorhana Yahya & Nooraini Zainuddin, 2019. "Mathematical Modeling and Simulation of Nanoparticle-Assisted Enhanced Oil Recovery—A Review," Energies, MDPI, vol. 12(8), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1575-:d:225919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1575/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1575/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaofei Sun & Yanyu Zhang & Guangpeng Chen & Zhiyong Gai, 2017. "Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress," Energies, MDPI, vol. 10(3), pages 1-33, March.
    2. Vladimir Alvarado & Eduardo Manrique, 2010. "Enhanced Oil Recovery: An Update Review," Energies, MDPI, vol. 3(9), pages 1-47, August.
    3. Patel, Jay & Borgohain, Subrata & Kumar, Mayank & Rangarajan, Vivek & Somasundaran, Ponisseril & Sen, Ramkrishna, 2015. "Recent developments in microbial enhanced oil recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1539-1558.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ciro Aprea & Adriana Greco & Angelo Maiorino & Claudia Masselli, 2019. "Enhancing the Heat Transfer in an Active Barocaloric Cooling System Using Ethylene-Glycol Based Nanofluids as Secondary Medium," Energies, MDPI, vol. 12(15), pages 1-15, July.
    2. Xu Jiang & Ming Liu & Xingxun Li & Li Wang & Shuang Liang & Xuqiang Guo, 2021. "Effects of Surfactant and Hydrophobic Nanoparticles on the Crude Oil-Water Interfacial Tension," Energies, MDPI, vol. 14(19), pages 1-11, September.
    3. Jianzhong Wang & Suo Tian & Xiaoze Liu & Xiangtao Wang & Yue Huang & Yingchao Fu & Qingfa Xu, 2022. "Molecular Dynamics Simulation of the Oil–Water Interface Behavior of Modified Graphene Oxide and Its Effect on Interfacial Phenomena," Energies, MDPI, vol. 15(12), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Mingxing & Zhang, Zhichao & Cui, Xiaona & Song, Kaoping, 2017. "Studies of injection parameters for chemical flooding in carbonate reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1464-1471.
    2. Fasano, Matteo & Morciano, Matteo & Bergamasco, Luca & Chiavazzo, Eliodoro & Zampato, Massimo & Carminati, Stefano & Asinari, Pietro, 2021. "Deep-sea reverse osmosis desalination for energy efficient low salinity enhanced oil recovery," Applied Energy, Elsevier, vol. 304(C).
    3. Oscar E. Medina & Carol Olmos & Sergio H. Lopera & Farid B. Cortés & Camilo A. Franco, 2019. "Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review," Energies, MDPI, vol. 12(24), pages 1-36, December.
    4. Marzuqa Quraishi & Shashi Kant Bhatia & Soumya Pandit & Piyush Kumar Gupta & Vivek Rangarajan & Dibyajit Lahiri & Sunita Varjani & Sanjeet Mehariya & Yung-Hun Yang, 2021. "Exploiting Microbes in the Petroleum Field: Analyzing the Credibility of Microbial Enhanced Oil Recovery (MEOR)," Energies, MDPI, vol. 14(15), pages 1-30, August.
    5. Omid Mosalman Haghighi & Ghasem Zargar & Abbas Khaksar Manshad & Muhammad Ali & Mohammad Ali Takassi & Jagar A. Ali & Alireza Keshavarz, 2020. "Effect of Environment-Friendly Non-Ionic Surfactant on Interfacial Tension Reduction and Wettability Alteration; Implications for Enhanced Oil Recovery," Energies, MDPI, vol. 13(15), pages 1-18, August.
    6. Xiankang Xin & Yiqiang Li & Gaoming Yu & Weiying Wang & Zhongzhi Zhang & Maolin Zhang & Wenli Ke & Debin Kong & Keliu Wu & Zhangxin Chen, 2017. "Non-Newtonian Flow Characteristics of Heavy Oil in the Bohai Bay Oilfield: Experimental and Simulation Studies," Energies, MDPI, vol. 10(11), pages 1-25, October.
    7. Tariq Ali Chandio & Muhammad A. Manan & Khalil Rehman Memon & Ghulam Abbas & Ghazanfer Raza Abbasi, 2021. "Enhanced Oil Recovery by Hydrophilic Silica Nanofluid: Experimental Evaluation of the Impact of Parameters and Mechanisms on Recovery Potential," Energies, MDPI, vol. 14(18), pages 1-19, September.
    8. Samin Raziperchikolaee & Ashwin Pasumarti & Srikanta Mishra, 2020. "The effect of natural fractures on CO2 storage performance and oil recovery from CO2 and WAG injection in an Appalachian basin reservoir," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1098-1114, October.
    9. Welkenhuysen, Kris & Rupert, Jort & Compernolle, Tine & Ramirez, Andrea & Swennen, Rudy & Piessens, Kris, 2017. "Considering economic and geological uncertainty in the simulation of realistic investment decisions for CO2-EOR projects in the North Sea," Applied Energy, Elsevier, vol. 185(P1), pages 745-761.
    10. Rui Dias & Paulo Alexandre & Nuno Teixeira & Mariana Chambino, 2023. "Clean Energy Stocks: Resilient Safe Havens in the Volatility of Dirty Cryptocurrencies," Energies, MDPI, vol. 16(13), pages 1-24, July.
    11. Adedapo N. Awolayo & Hemanta K. Sarma & Long X. Nghiem, 2018. "Brine-Dependent Recovery Processes in Carbonate and Sandstone Petroleum Reservoirs: Review of Laboratory-Field Studies, Interfacial Mechanisms and Modeling Attempts," Energies, MDPI, vol. 11(11), pages 1-66, November.
    12. Mattia Boscherini & Alba Storione & Matteo Minelli & Francesco Miccio & Ferruccio Doghieri, 2023. "New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas," Energies, MDPI, vol. 16(17), pages 1-33, September.
    13. Anastasia Ivanova & Azhar Kuandykova & Alexander Rodionov & Andrey Morkovkin & Alexander Burukhin & Alexey Cheremisin, 2023. "Pore-Scale Investigation of Low-Salinity Nanofluids on Wetting Properties of Oil Carbonate Reservoir Rocks Studied by X-ray Micro-Tomography," Energies, MDPI, vol. 16(3), pages 1-14, January.
    14. Amjed M. Hassan & Mohamed A. Mahmoud & Abdulaziz A. Al-Majed & Ayman R. Al-Nakhli & Mohammed A. Bataweel & Salaheldin Elkatatny, 2019. "Mitigation of Condensate Banking Using Thermochemical Treatment: Experimental and Analytical Study," Energies, MDPI, vol. 12(5), pages 1-12, February.
    15. Michele Fioretti & Alessandro Iaria & Aljoscha Janssen & Robert K Perrons & Clément Mazet-Sonilhac, 2022. "Innovation Begets Innovation and Concentration: the Case of Upstream Oil & Gas in the North Sea," Working Papers hal-03791971, HAL.
    16. Laura Osma & Luis García & Romel Pérez & Carolina Barbosa & Jesús Botett & Jorge Sandoval & Eduardo Manrique, 2019. "Benefit–Cost and Energy Efficiency Index to Support the Screening of Hybrid Cyclic Steam Stimulation Methods," Energies, MDPI, vol. 12(24), pages 1-16, December.
    17. Simon P. Philbin, 2020. "Critical Analysis and Evaluation of the Technology Pathways for Carbon Capture and Utilization," Clean Technol., MDPI, vol. 2(4), pages 1-21, December.
    18. Chao Ma & Xingyu Liu & Longlong Xie & Yan Chen & Wendong Ren & Wen Gu & Minghua Zhang & Huili Zhou, 2021. "Synthesis and Molecular Dynamics Simulation of Amphiphilic Low Molecular Weight Polymer Viscosity Reducer for Heavy Oil Cold Recovery," Energies, MDPI, vol. 14(21), pages 1-14, October.
    19. Nanjun Lai & Xin Guo & Ning Zhou & Qian Xu, 2016. "Shear Resistance Properties of Modified Nano-SiO 2 /AA/AM Copolymer Oil Displacement Agent," Energies, MDPI, vol. 9(12), pages 1-13, December.
    20. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1575-:d:225919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.