IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6234-d647387.html
   My bibliography  Save this article

Effects of Surfactant and Hydrophobic Nanoparticles on the Crude Oil-Water Interfacial Tension

Author

Listed:
  • Xu Jiang

    (Xinjiang Petroleum Engineering Co., Ltd., Karamay 834000, China)

  • Ming Liu

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum—Beijing, Beijing 102249, China)

  • Xingxun Li

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum—Beijing, Beijing 102249, China)

  • Li Wang

    (Xinjiang Petroleum Engineering Co., Ltd., Karamay 834000, China)

  • Shuang Liang

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum—Beijing, Beijing 102249, China)

  • Xuqiang Guo

    (State Key Laboratory of Heavy Oil Processing, China University of Petroleum—Beijing, Beijing 102249, China
    Faculty of Engineering, China University of Petroleum—Beijing at Karamay, Karamay 834000, China)

Abstract

Surfactants and nanoparticles play crucial roles in controlling the oil-water interfacial phenomenon. The natural oil-wet mineral nanoparticles that exist in crude oil could remarkably affect water-oil interfacial characteristics. Most of recent studies focus on the effect of hydrophilic nanoparticles dispersed in water on the oil-water interfacial phenomenon for the nanoparticle enhanced oil recovery. However, studies of the impact of the oil-wet nanoparticles existed in crude oil on interfacial behaviour are rare. In this study, the impacts of Span 80 surfactant and hydrophobic SiO 2 nanoparticles on the crude oil-water interfacial characteristics were studied by measuring the dynamic and equilibrium crude oil-water interfacial tensions. The results show the existence of nanoparticles leading to higher crude oil-water interfacial tensions than those without nanoparticles at low surfactant concentrations below 2000 ppm. At a Span 80 surfactant concentration of 1000 ppm, the increase of interfacial tension caused by nanoparticles is largest, which is around 8.6 mN/m. For high Span 80 surfactant concentrations, the less significant impact of nanoparticles on the crude oil-water interfacial tension is obtained. The effect of nanoparticle concentration on the crude oil-water interfacial tension was also investigated in the existence of surfactant. The data indicates the less significant influence of nanoparticles on the crude oil-water interfacial tension at high nanoparticle concentration in the presence of Span 80 surfactant. This study confirms the influences of nanoparticle-surfactant interaction and competitive surfactant molecule adsorption on the nanoparticles surfaces and the crude oil-water interface.

Suggested Citation

  • Xu Jiang & Ming Liu & Xingxun Li & Li Wang & Shuang Liang & Xuqiang Guo, 2021. "Effects of Surfactant and Hydrophobic Nanoparticles on the Crude Oil-Water Interfacial Tension," Energies, MDPI, vol. 14(19), pages 1-11, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6234-:d:647387
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dayo Afekare & Jayne C. Garno & Dandina Rao, 2020. "Insights into Nanoscale Wettability Effects of Low Salinity and Nanofluid Enhanced Oil Recovery Techniques," Energies, MDPI, vol. 13(17), pages 1-22, August.
    2. Sayed Ameenuddin Irfan & Afza Shafie & Noorhana Yahya & Nooraini Zainuddin, 2019. "Mathematical Modeling and Simulation of Nanoparticle-Assisted Enhanced Oil Recovery—A Review," Energies, MDPI, vol. 12(8), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz Nagi & Mateusz Bogacz, 2023. "Statistical Analysis of Breakdown Voltage of Insulating Liquid Dopped with Surfactants," Energies, MDPI, vol. 16(3), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ciro Aprea & Adriana Greco & Angelo Maiorino & Claudia Masselli, 2019. "Enhancing the Heat Transfer in an Active Barocaloric Cooling System Using Ethylene-Glycol Based Nanofluids as Secondary Medium," Energies, MDPI, vol. 12(15), pages 1-15, July.
    2. Jianzhong Wang & Suo Tian & Xiaoze Liu & Xiangtao Wang & Yue Huang & Yingchao Fu & Qingfa Xu, 2022. "Molecular Dynamics Simulation of the Oil–Water Interface Behavior of Modified Graphene Oxide and Its Effect on Interfacial Phenomena," Energies, MDPI, vol. 15(12), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6234-:d:647387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.