IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v227y2021ics0360544221007611.html
   My bibliography  Save this article

Effects of the reactor volumetric ratio and recycle ratio on the methane and energy productivity of a three-step anaerobic sequencing batch reactor (3S-ASBR) treating ethanol wastewater

Author

Listed:
  • Seneesrisakul, Kessara
  • Jantaruksa, Todsapon
  • Jiraprasertwong, Achiraya
  • Pornmai, Krittiya
  • Rangsunvigit, Pramoch
  • Chavadej, Sumaeth

Abstract

A new three-step anaerobic sequencing batch reactor (3S-ASBR) was developed to enhance methane productivity and energy yield by varying the reactor volumetric and recycle ratios. The pH of the first reactor (R1) was maintained at 5.5, whereas that of the others (R2/R3) was not controlled. The effluent from R3 was recirculated to R1 to amplify the alkalinity and lessen the NaOH quantity for pH regulation. The 3S-ASBR was continually operated to attain a steady state at a moderate COD loading rate (10 kg/m3d) with different reactor volumetric ratios under 37 °C, a fixed total liquid volume of 30 L and a constant recycle ratio of unity. A R1:R2:R3 volumetric ratio of 1:1.5:5 gave the highest COD reduction (90%) and yielded 343 mL CH4/g COD applied with an overall energy extraction efficiency of up to 66%. This volumetric ratio corresponded well to the generation time ratio of the microbes involved in the hydrolysis/acidogenesis, acetogenesis, and methanogenesis steps which can be applied to scale up both 3S-ASBR and three-step/stage upflow anaerobic sludge blanket (3S-UASB) systems. The low pH level (5.5) in R1 was responsible for maintaining adequate amounts of all micronutrients in the system, causing both high microbial concentrations and activities. This was because the lower the solution pH, the higher the fraction of produced H2S to be in the gaseous phase, causing the lower the amounts of micronutrients to be precipitated chemically.

Suggested Citation

  • Seneesrisakul, Kessara & Jantaruksa, Todsapon & Jiraprasertwong, Achiraya & Pornmai, Krittiya & Rangsunvigit, Pramoch & Chavadej, Sumaeth, 2021. "Effects of the reactor volumetric ratio and recycle ratio on the methane and energy productivity of a three-step anaerobic sequencing batch reactor (3S-ASBR) treating ethanol wastewater," Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007611
    DOI: 10.1016/j.energy.2021.120512
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221007611
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Voelklein, M.A. & O' Shea, R. & Jacob, A. & Murphy, J.D., 2017. "Role of trace elements in single and two-stage digestion of food waste at high organic loading rates," Energy, Elsevier, vol. 121(C), pages 185-192.
    2. Kessara Seneesrisakul & Twarath Sutabutr & Sumaeth Chavadej, 2018. "The Effect of Temperature on the Methanogenic Activity in Relation to Micronutrient Availability," Energies, MDPI, vol. 11(5), pages 1-17, April.
    3. Achiraya Jiraprasertwong & Kornpong Vichaitanapat & Malinee Leethochawalit & Sumaeth Chavadej, 2018. "Three-Stage Anaerobic Sequencing Batch Reactor (ASBR) for Maximum Methane Production: Effects of COD Loading Rate and Reactor Volumetric Ratio," Energies, MDPI, vol. 11(6), pages 1-16, June.
    4. Tangkathitipong, Pranee & Intanoo, Patcharee & Butpan, Janyawan & Chavadej, Sumaeth, 2017. "Separate production of hydrogen and methane from biodiesel wastewater with added glycerin by two-stage anaerobic sequencing batch reactors (ASBR)," Renewable Energy, Elsevier, vol. 113(C), pages 1077-1085.
    5. Anoop Singh & Surajbhan Sevda & Ibrahim M. Abu Reesh & Karolien Vanbroekhoven & Dheeraj Rathore & Deepak Pant, 2015. "Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability," Energies, MDPI, vol. 8(11), pages 1-19, November.
    6. Jiraprasertwong, Achiraya & Maitriwong, Kiatchai & Chavadej, Sumaeth, 2019. "Production of biogas from cassava wastewater using a three-stage upflow anaerobic sludge blanket (UASB) reactor," Renewable Energy, Elsevier, vol. 130(C), pages 191-205.
    7. Merlin Christy, P. & Gopinath, L.R. & Divya, D., 2014. "A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 167-173.
    8. Bożym, Marta & Florczak, Iwona & Zdanowska, Paulina & Wojdalski, Janusz & Klimkiewicz, Marek, 2015. "An analysis of metal concentrations in food wastes for biogas production," Renewable Energy, Elsevier, vol. 77(C), pages 467-472.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kessara Seneesrisakul & Twarath Sutabutr & Sumaeth Chavadej, 2018. "The Effect of Temperature on the Methanogenic Activity in Relation to Micronutrient Availability," Energies, MDPI, vol. 11(5), pages 1-17, April.
    2. Ghofrani-Isfahani, Parisa & Baniamerian, Hamed & Tsapekos, Panagiotis & Alvarado-Morales, Merlin & Kasama, Takeshi & Shahrokhi, Mohammad & Vossoughi, Manouchehr & Angelidaki, Irini, 2020. "Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate," Energy, Elsevier, vol. 191(C).
    3. Achiraya Jiraprasertwong & Kornpong Vichaitanapat & Malinee Leethochawalit & Sumaeth Chavadej, 2018. "Three-Stage Anaerobic Sequencing Batch Reactor (ASBR) for Maximum Methane Production: Effects of COD Loading Rate and Reactor Volumetric Ratio," Energies, MDPI, vol. 11(6), pages 1-16, June.
    4. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    5. Jiraprasertwong, Achiraya & Maitriwong, Kiatchai & Chavadej, Sumaeth, 2019. "Production of biogas from cassava wastewater using a three-stage upflow anaerobic sludge blanket (UASB) reactor," Renewable Energy, Elsevier, vol. 130(C), pages 191-205.
    6. Shanshan Zhao & Mingsen Qin & Xia Yang & Wenke Bai & Yunfeng Yao & Junqiang Wang, 2023. "Freeze–Thaw Cycles Have More of an Effect on Greenhouse Gas Fluxes than Soil Water Content on the Eastern Edge of the Qinghai–Tibet Plateau," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    7. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Liu, Jianfeng & Tang, Zhengkang & Wang, Changmei & Wu, Kai & Song, Yuanlin & Wang, Xingping & Zhang, Zhiwen & Zhao, Xingling & Yang, Bin & Piao, Mingguo & Yin, Fang & Zhang, Wudi, 2021. "Novel technique for sustainable utilisation of water hyacinth using EGSB and MCSTR: Control overgrowth, energy recovery, and microbial metabolic mechanism," Renewable Energy, Elsevier, vol. 163(C), pages 1701-1710.
    9. Granada, Camille E. & Hasan, Camila & Marder, Munique & Konrad, Odorico & Vargas, Luciano K. & Passaglia, Luciane M.P. & Giongo, Adriana & de Oliveira, Rafael R. & Pereira, Leandro de M. & de Jesus Tr, 2018. "Biogas from slaughterhouse wastewater anaerobic digestion is driven by the archaeal family Methanobacteriaceae and bacterial families Porphyromonadaceae and Tissierellaceae," Renewable Energy, Elsevier, vol. 118(C), pages 840-846.
    10. Huayong Zhang & Di An & Yudong Cao & Yonglan Tian & Jinxian He, 2021. "Modeling the Methane Production Kinetics of Anaerobic Co-Digestion of Agricultural Wastes Using Sigmoidal Functions," Energies, MDPI, vol. 14(2), pages 1-12, January.
    11. Tonanzi, B. & Gallipoli, A. & Gianico, A. & Montecchio, D. & Pagliaccia, P. & Rossetti, S. & Braguglia, C.M., 2021. "Elucidating the key factors in semicontinuous anaerobic digestion of urban biowaste: The crucial role of sludge addition in process stability, microbial community enrichment and methane production," Renewable Energy, Elsevier, vol. 179(C), pages 272-284.
    12. Mohammed Ali Musa & Syazwani Idrus & Che Man Hasfalina & Nik Norsyahariati Nik Daud, 2018. "Effect of Organic Loading Rate on Anaerobic Digestion Performance of Mesophilic (UASB) Reactor Using Cattle Slaughterhouse Wastewater as Substrate," IJERPH, MDPI, vol. 15(10), pages 1-19, October.
    13. Asma Sattar & Chaudhry Arslan & Changying Ji & Sumiyya Sattar & Irshad Ali Mari & Haroon Rashid & Fariha Ilyas, 2016. "Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions," Energies, MDPI, vol. 9(3), pages 1-14, March.
    14. Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun, 2019. "Life-cycle assessment of biohythane production via two-stage anaerobic fermentation from microalgae and food waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 395-410.
    15. A. Sinan Akturk & Goksel N. Demirer, 2020. "Improved Food Waste Stabilization and Valorization by Anaerobic Digestion Through Supplementation of Conductive Materials and Trace Elements," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    16. Vanessa S. Schulz & Sebastian Munz & Kerstin Stolzenburg & Jens Hartung & Sebastian Weisenburger & Klaus Mastel & Kurt Möller & Wilhelm Claupein & Simone Graeff-Hönninger, 2018. "Biomass and Biogas Yield of Maize ( Zea mays L.) Grown under Artificial Shading," Agriculture, MDPI, vol. 8(11), pages 1-17, November.
    17. Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2022. "Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    18. Yonglan Tian & Shusen Li & Ying Li & Huayong Zhang & Xueyue Mi & Hai Huang, 2019. "Cadmium Addition Effects on Anaerobic Digestion with Elevated Temperatures," Energies, MDPI, vol. 12(12), pages 1-11, June.
    19. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Anna Nowicka & Magda Dudek, 2024. "Optimisation of Biogas Production in the Co-Digestion of Pre-Hydrodynamically Cavitated Aerobic Granular Sludge with Waste Fats," Energies, MDPI, vol. 17(4), pages 1-16, February.
    20. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.