IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p922-d1339822.html
   My bibliography  Save this article

Optimisation of Biogas Production in the Co-Digestion of Pre-Hydrodynamically Cavitated Aerobic Granular Sludge with Waste Fats

Author

Listed:
  • Marcin Dębowski

    (Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland)

  • Marcin Zieliński

    (Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland)

  • Joanna Kazimierowicz

    (Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Anna Nowicka

    (Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland)

  • Magda Dudek

    (Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Str. Oczapowskiego 5, 10-719 Olsztyn, Poland)

Abstract

The characteristics of excess aerobic granular sludge, related to its structure and chemical composition, limit the efficiency of anaerobic digestion. For this reason, pre-treatment methods and compositions with other organic substrates are used. In earlier work, no attempt was made to intensify the methane fermentation of the excess aerobic granular sludge by adding fatty waste materials. The aim of the research was to determine the effects of co-digestion of pre-hydrodynamically cavitated aerobic granular sludge with waste fats on the efficiency of methane fermentation under mesophilic and thermophilic conditions. The addition of waste fats improved the C/N ratio and increased its value to 19. Under mesophilic conditions, the highest effects were observed when the proportion of volatile solids from waste fats was 25%. The amount of biogas produced increased by 17.85% and CH 4 by 19.85% compared to the control. The greatest effects were observed in thermophilic anaerobic digestion at 55 °C, where a 15% waste fat content in volatile solids was ensured. This resulted in the production of 1278.2 ± 40.2 mL/gVS biogas and 889.4 ± 29.7 mL/gVS CH 4 . The CH 4 content of the biogas was 69.6 ± 1.3%. The increase in biogas and CH 4 yield compared to pure aerobic granular sludge anaerobic digestion was 34.4% and 40.1%, respectively. An increase in the proportion of waste fats in the substrate had no significant effect on the efficiency of methane fermentation. Strong positive correlations (R 2 > 0.9) were observed between biogas and CH 4 production and the C/N ratio and VS concentration.

Suggested Citation

  • Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Anna Nowicka & Magda Dudek, 2024. "Optimisation of Biogas Production in the Co-Digestion of Pre-Hydrodynamically Cavitated Aerobic Granular Sludge with Waste Fats," Energies, MDPI, vol. 17(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:922-:d:1339822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/922/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/922/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joanna Kazimierowicz & Marcin Dębowski & Marcin Zieliński, 2023. "Technological, Ecological, and Energy-Economic Aspects of Using Solidified Carbon Dioxide for Aerobic Granular Sludge Pre-Treatment Prior to Anaerobic Digestion," IJERPH, MDPI, vol. 20(5), pages 1-21, February.
    2. Silvestre, G. & Illa, J. & Fernández, B. & Bonmatí, A., 2014. "Thermophilic anaerobic co-digestion of sewage sludge with grease waste: Effect of long chain fatty acids in the methane yield and its dewatering properties," Applied Energy, Elsevier, vol. 117(C), pages 87-94.
    3. Diamantis, Vasileios & Eftaxias, Alexandros & Stamatelatou, Katerina & Noutsopoulos, Constantinos & Vlachokostas, Christos & Aivasidis, Alexandros, 2021. "Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes," Renewable Energy, Elsevier, vol. 168(C), pages 438-447.
    4. Kessara Seneesrisakul & Twarath Sutabutr & Sumaeth Chavadej, 2018. "The Effect of Temperature on the Methanogenic Activity in Relation to Micronutrient Availability," Energies, MDPI, vol. 11(5), pages 1-17, April.
    5. Di Capua, Francesco & Spasiano, Danilo & Giordano, Andrea & Adani, Fabrizio & Fratino, Umberto & Pirozzi, Francesco & Esposito, Giovanni, 2020. "High-solid anaerobic digestion of sewage sludge: challenges and opportunities," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Dębowski & Joanna Kazimierowicz & Anna Nowicka & Magda Dudek & Marcin Zieliński, 2024. "The Use of Hydrodynamic Cavitation to Improve the Anaerobic Digestion of Waste from Dairy Cattle Farming—From Laboratory Tests to Large-Scale Agricultural Biogas Plants," Energies, MDPI, vol. 17(6), pages 1-26, March.
    2. Shanshan Zhao & Mingsen Qin & Xia Yang & Wenke Bai & Yunfeng Yao & Junqiang Wang, 2023. "Freeze–Thaw Cycles Have More of an Effect on Greenhouse Gas Fluxes than Soil Water Content on the Eastern Edge of the Qinghai–Tibet Plateau," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    3. Xu, Xiaodong & Sielicki, Krzysztof & Min, Jiakang & Li, Jiaxin & Hao, Chuncheng & Wen, Xin & Chen, Xuecheng & Mijowska, Ewa, 2022. "One-step converting biowaste wolfberry fruits into hierarchical porous carbon and its application for high-performance supercapacitors," Renewable Energy, Elsevier, vol. 185(C), pages 187-195.
    4. Jiawen Zhang & Zhiyi Liang & Toru Matsumoto & Tiejia Zhang, 2022. "Environmental and Economic Implication of Implementation Scale of Sewage Sludge Recycling Systems Considering Carbon Trading Price," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    5. González-Arias, Judith & González-Castaño, Miriam & Sánchez, Marta Elena & Cara-Jiménez, Jorge & Arellano-García, Harvey, 2022. "Valorization of biomass-derived CO2 residues with Cu-MnOx catalysts for RWGS reaction," Renewable Energy, Elsevier, vol. 182(C), pages 443-451.
    6. El Ibrahimi, Mohammed & Khay, Ismail & El Maakoul, Anas & Bakhouya, Mohamed, 2022. "Effects of the temperature range on the energy performance of mixed and unmixed digesters with submerged waste: An experimental and CFD simulation study," Renewable Energy, Elsevier, vol. 200(C), pages 1092-1104.
    7. Yin, Yao & Liu, Ya-Juan & Meng, Shu-Juan & Kiran, Esra Uçkun & Liu, Yu, 2016. "Enzymatic pretreatment of activated sludge, food waste and their mixture for enhanced bioenergy recovery and waste volume reduction via anaerobic digestion," Applied Energy, Elsevier, vol. 179(C), pages 1131-1137.
    8. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    9. Mattioli, A. & Gatti, G.B. & Mattuzzi, G.P. & Cecchi, F. & Bolzonella, D., 2017. "Co-digestion of the organic fraction of municipal solid waste and sludge improves the energy balance of wastewater treatment plants: Rovereto case study," Renewable Energy, Elsevier, vol. 113(C), pages 980-988.
    10. Achiraya Jiraprasertwong & Kornpong Vichaitanapat & Malinee Leethochawalit & Sumaeth Chavadej, 2018. "Three-Stage Anaerobic Sequencing Batch Reactor (ASBR) for Maximum Methane Production: Effects of COD Loading Rate and Reactor Volumetric Ratio," Energies, MDPI, vol. 11(6), pages 1-16, June.
    11. Joana Silva & Rita Fragoso, 2023. "Enhanced Biomethanation: The Impact of Incorporating Fish Waste on the Co-Digestion of Pig Slurry and Orange Pomace," Energies, MDPI, vol. 16(16), pages 1-14, August.
    12. Ershad Ullah Khan & Åke Nordberg & Peter Malmros, 2022. "Waste Heat Driven Integrated Membrane Distillation for Concentrating Nutrients and Process Water Recovery at a Thermophilic Biogas Plant," Sustainability, MDPI, vol. 14(20), pages 1-21, October.
    13. Alexandros Eftaxias & Evangelia Anna Passa & Christos Michailidis & Christodoulos Daoutis & Apostolos Kantartzis & Vasileios Diamantis, 2022. "Residual Forest Biomass in Pinus Stands: Accumulation and Biogas Production Potential," Energies, MDPI, vol. 15(14), pages 1-11, July.
    14. Logan, Mohanakrishnan & Tan, Lea Chua & Nzeteu, Corine Orline & Lens, Piet N.L., 2023. "Effect of selenate on treatment of glycerol containing wastewater in UASB reactors," Renewable Energy, Elsevier, vol. 206(C), pages 97-110.
    15. Li, Yangyang & Jin, Yiying & Li, Jinhui & Nie, Yongfeng, 2016. "Enhanced nitrogen distribution and biomethanation of kitchen waste by thermal pre-treatment," Renewable Energy, Elsevier, vol. 89(C), pages 380-388.
    16. German Smetana & Ewa Neczaj & Anna Grosser, 2021. "Biomethane Potential of Selected Organic Waste and Sewage Sludge at Different Temperature Regimes," Energies, MDPI, vol. 14(14), pages 1-18, July.
    17. Jensen, P.D. & Sullivan, T. & Carney, C. & Batstone, D.J., 2014. "Analysis of the potential to recover energy and nutrient resources from cattle slaughterhouses in Australia by employing anaerobic digestion," Applied Energy, Elsevier, vol. 136(C), pages 23-31.
    18. Nicola Di Costanzo & Alessandra Cesaro & Francesco Di Capua & Giovanni Esposito, 2021. "Exploiting the Nutrient Potential of Anaerobically Digested Sewage Sludge: A Review," Energies, MDPI, vol. 14(23), pages 1-25, December.
    19. Xu, Fuqing & Okopi, Solomon Inalegwu & Jiang, Yongmei & Chen, Zhou & Meng, Liyun & Li, Yebo & Sun, Weimin & Li, Chaokun, 2022. "Multi-criteria assessment of food waste and waste paper anaerobic co-digestion: Effects of inoculation ratio, total solids content, and feedstock composition," Renewable Energy, Elsevier, vol. 194(C), pages 40-50.
    20. Ni, Ping & Lyu, Tao & Sun, Hao & Dong, Renjie & Wu, Shubiao, 2017. "Liquid digestate recycled utilization in anaerobic digestion of pig manure: Effect on methane production, system stability and heavy metal mobilization," Energy, Elsevier, vol. 141(C), pages 1695-1704.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:922-:d:1339822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.