IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v225y2021ics036054422100517x.html
   My bibliography  Save this article

Rejectable deep differential dynamic programming for real-time integrated generation dispatch and control of micro-grids

Author

Listed:
  • Yin, Linfei
  • Zhao, Lulin

Abstract

With the application of renewable energy and distributed power generation in micro-grids, conventional artificial intelligent control strategies have shown deficiencies for the frequency control and economic dispatch of micro-grids. Conventional deep learning controllers could provide outputs although when the predicted probability is not high, which will lead to micro-grid system divergence. This paper proposes a rejectable deep differential dynamic programming for the real-time integrated generation dispatch and control of micro-grids. The rejectable deep differential dynamic programming can provide an action from an analytic control algorithm when the predicted probability is not high enough. The deep differential dynamic programming contains four deep neural networks, i.e., “deep differential prediction network”, “deep differential evaluation network 1”, “deep differential evaluation network 2” and “deep differential execution network”. To verify the feasibility and effectiveness of the proposed rejectable deep differential dynamic programming, a total of 25 combined conventional optimization and control algorithms are compared under a micro-grid based on Hainan Power Grid. The numeric simulation results show that the proposed approach can obtain high control performance for the real-time integrated generation dispatch and control framework, which can replace the conventional combined “economic dispatch + automatic generation control + droop control” framework of micro-grids.

Suggested Citation

  • Yin, Linfei & Zhao, Lulin, 2021. "Rejectable deep differential dynamic programming for real-time integrated generation dispatch and control of micro-grids," Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:energy:v:225:y:2021:i:c:s036054422100517x
    DOI: 10.1016/j.energy.2021.120268
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422100517X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120268?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Linfei & Yu, Tao & Zhang, Xiaoshun & Yang, Bo, 2018. "Relaxed deep learning for real-time economic generation dispatch and control with unified time scale," Energy, Elsevier, vol. 149(C), pages 11-23.
    2. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Liao, Sheng-li, 2017. "Hydropower system operation optimization by discrete differential dynamic programming based on orthogonal experiment design," Energy, Elsevier, vol. 126(C), pages 720-732.
    3. Yin, Linfei & Gao, Qi & Zhao, Lulin & Wang, Tao, 2020. "Expandable deep learning for real-time economic generation dispatch and control of three-state energies based future smart grids," Energy, Elsevier, vol. 191(C).
    4. Zhang, Ning & Sun, Qiuye & Yang, Lingxiao, 2021. "A two-stage multi-objective optimal scheduling in the integrated energy system with We-Energy modeling," Energy, Elsevier, vol. 215(PB).
    5. Latif, Abdul & Hussain, S.M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2020. "State-of-the-art of controllers and soft computing techniques for regulated load frequency management of single/multi-area traditional and renewable energy based power systems," Applied Energy, Elsevier, vol. 266(C).
    6. El Sehiemy, Ragab A. & Selim, F. & Bentouati, Bachir & Abido, M.A., 2020. "A novel multi-objective hybrid particle swarm and salp optimization algorithm for technical-economical-environmental operation in power systems," Energy, Elsevier, vol. 193(C).
    7. Howlader, Abdul Motin & Sadoyama, Staci & Roose, Leon R. & Chen, Yan, 2020. "Active power control to mitigate voltage and frequency deviations for the smart grid using smart PV inverters," Applied Energy, Elsevier, vol. 258(C).
    8. Mahmud, Khizir & Khan, Behram & Ravishankar, Jayashri & Ahmadi, Abdollah & Siano, Pierluigi, 2020. "An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    9. Hlalele, Thabo G. & Naidoo, Raj M. & Bansal, Ramesh C. & Zhang, Jiangfeng, 2020. "Multi-objective stochastic economic dispatch with maximal renewable penetration under renewable obligation," Applied Energy, Elsevier, vol. 270(C).
    10. Shang-Guan, Xingchen & He, Yong & Zhang, Chuanke & Jiang, Lin & Spencer, Joseph William & Wu, Min, 2020. "Sampled-data based discrete and fast load frequency control for power systems with wind power," Applied Energy, Elsevier, vol. 259(C).
    11. Singh, Diljinder & Dhillon, J.S., 2019. "Ameliorated grey wolf optimization for economic load dispatch problem," Energy, Elsevier, vol. 169(C), pages 398-419.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).
    2. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    3. Yin, Linfei & Zhang, Bin, 2023. "Relaxed deep generative adversarial networks for real-time economic smart generation dispatch and control of integrated energy systems," Applied Energy, Elsevier, vol. 330(PA).
    4. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    5. Chen, Chunyu & Cui, Mingjian & Fang, Xin & Ren, Bixing & Chen, Yang, 2020. "Load altering attack-tolerant defense strategy for load frequency control system," Applied Energy, Elsevier, vol. 280(C).
    6. Shangguan, Xing-Chen & He, Yong & Zhang, Chuan-Ke & Jiang, Lin & Wu, Min, 2022. "Load frequency control of time-delayed power system based on event-triggered communication scheme," Applied Energy, Elsevier, vol. 308(C).
    7. Latif, Abdul & Hussain, S. M. Suhail & Das, Dulal Chandra & Ustun, Taha Selim, 2021. "Double stage controller optimization for load frequency stabilization in hybrid wind-ocean wave energy based maritime microgrid system," Applied Energy, Elsevier, vol. 282(PA).
    8. Yang, Wenqiang & Zhu, Xinxin & Xiao, Qinge & Yang, Zhile, 2023. "Enhanced multi-objective marine predator algorithm for dynamic economic-grid fluctuation dispatch with plug-in electric vehicles," Energy, Elsevier, vol. 282(C).
    9. Abdul Latif & S. M. Suhail Hussain & Dulal Chandra Das & Taha Selim Ustun, 2021. "Design and Implementation of Maiden Dual-Level Controller for Ameliorating Frequency Control in a Hybrid Microgrid," Energies, MDPI, vol. 14(9), pages 1-15, April.
    10. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    11. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    12. Yin, Linfei & Zhang, Bin, 2021. "Time series generative adversarial network controller for long-term smart generation control of microgrids," Applied Energy, Elsevier, vol. 281(C).
    13. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    14. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    15. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    16. Karlson Hargroves & Benjamin James & Joshua Lane & Peter Newman, 2023. "The Role of Distributed Energy Resources and Associated Business Models in the Decentralised Energy Transition: A Review," Energies, MDPI, vol. 16(10), pages 1-15, May.
    17. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    18. Ghulam Abbas & Irfan Ahmad Khan & Naveed Ashraf & Muhammad Taskeen Raza & Muhammad Rashad & Raheel Muzzammel, 2023. "On Employing a Constrained Nonlinear Optimizer to Constrained Economic Dispatch Problems," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    19. Fatemeh Marzbani & Akmal Abdelfatah, 2024. "Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-31, January.
    20. Loau Al-Bahrani & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2021. "Solving the Real Power Limitations in the Dynamic Economic Dispatch of Large-Scale Thermal Power Units under the Effects of Valve-Point Loading and Ramp-Rate Limitations," Sustainability, MDPI, vol. 13(3), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:225:y:2021:i:c:s036054422100517x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.