IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v228y2024ics0960148124006955.html
   My bibliography  Save this article

Knowledge-shareable adaptive deep dynamic programming for hierarchical generation control of distributed high-percentage renewable energy systems

Author

Listed:
  • Zhao, Lulin
  • Yin, Linfei

Abstract

The increased proportion of distributed renewable energy sources connected to systems leads to frequency regulation difficulty, such as uncoordinated algorithms, inconsistent optimization and control objectives, and long training time. This work proposes a knowledge-shareable adaptive deep dynamic programming (KSADDP) to improve the active control accuracy and generation economy of the proposed hierarchical generation control framework, which contains two-layer control structures. In the first layer, droop control is employed to optimize the outputs of controllable generators, follow the frequency changes, reduce frequency deviation, and improve the operation economy of battery energy storage systems. In the second layer, a KSADDP is proposed to mitigate local optimum and accelerate the hybrid cooperative structure optimization by sharing the parameters of neural networks. These two layers synergistically optimize control performance and reduce generation costs. The simulation results of a three-high-percentage renewable energy system show that: with two layers of cooperation and sharing training information, the KSADDP outperforms the comparison algorithms in seven evaluation indices and reduces the generation cost by 4.85%–7.41 % compared to the comparison algorithms. The proposed KSADDP cooperates the time scales between multiple layers, cooperates the objectives between multiple layers, increases the parameter-sharing process, and reduces training time.

Suggested Citation

  • Zhao, Lulin & Yin, Linfei, 2024. "Knowledge-shareable adaptive deep dynamic programming for hierarchical generation control of distributed high-percentage renewable energy systems," Renewable Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124006955
    DOI: 10.1016/j.renene.2024.120627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124006955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Linfei & Yu, Tao & Zhang, Xiaoshun & Yang, Bo, 2018. "Relaxed deep learning for real-time economic generation dispatch and control with unified time scale," Energy, Elsevier, vol. 149(C), pages 11-23.
    2. Han, Kunlun & Yang, Kai & Yin, Linfei, 2022. "Lightweight actor-critic generative adversarial networks for real-time smart generation control of microgrids," Applied Energy, Elsevier, vol. 317(C).
    3. Huo, Zhihong & Xu, Chang, 2022. "Distributed cooperative automatic generation control and multi-event triggered mechanisms co-design for networked wind-integrated power systems," Renewable Energy, Elsevier, vol. 193(C), pages 41-56.
    4. Yin, Linfei & Gao, Qi & Zhao, Lulin & Wang, Tao, 2020. "Expandable deep learning for real-time economic generation dispatch and control of three-state energies based future smart grids," Energy, Elsevier, vol. 191(C).
    5. Schäffer, Linn Emelie & Helseth, Arild & Korpås, Magnus, 2022. "A stochastic dynamic programming model for hydropower scheduling with state-dependent maximum discharge constraints," Renewable Energy, Elsevier, vol. 194(C), pages 571-581.
    6. Zhu, Jiaoyiling & Hu, Weihao & Xu, Xiao & Liu, Haoming & Pan, Li & Fan, Haoyang & Zhang, Zhenyuan & Chen, Zhe, 2022. "Optimal scheduling of a wind energy dominated distribution network via a deep reinforcement learning approach," Renewable Energy, Elsevier, vol. 201(P1), pages 792-801.
    7. Yin, Linfei & Wu, Yunzhi, 2022. "Mode-decomposition memory reinforcement network strategy for smart generation control in multi-area power systems containing renewable energy," Applied Energy, Elsevier, vol. 307(C).
    8. Yin, Linfei & Zhang, Bin, 2021. "Time series generative adversarial network controller for long-term smart generation control of microgrids," Applied Energy, Elsevier, vol. 281(C).
    9. Bromley-Dulfano, Isaac & Florez, Julian & Craig, Michael T., 2021. "Reliability benefits of wide-area renewable energy planning across the Western United States," Renewable Energy, Elsevier, vol. 179(C), pages 1487-1499.
    10. Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).
    11. Matamala, Yolanda & Feijoo, Felipe, 2021. "A two-stage stochastic Stackelberg model for microgrid operation with chance constraints for renewable energy generation uncertainty," Applied Energy, Elsevier, vol. 303(C).
    12. de Doile, Gabriel Nasser Doyle & Rotella Junior, Paulo & Rocha, Luiz Célio Souza & Janda, Karel & Aquila, Giancarlo & Peruchi, Rogério Santana & Balestrassi, Pedro Paulo, 2022. "Feasibility of hybrid wind and photovoltaic distributed generation and battery energy storage systems under techno-economic regulation," Renewable Energy, Elsevier, vol. 195(C), pages 1310-1323.
    13. Yin, Linfei & Li, Yu, 2022. "Hybrid multi-agent emotional deep Q network for generation control of multi-area integrated energy systems," Applied Energy, Elsevier, vol. 324(C).
    14. Yin, Linfei & Zhao, Lulin, 2021. "Rejectable deep differential dynamic programming for real-time integrated generation dispatch and control of micro-grids," Energy, Elsevier, vol. 225(C).
    15. e Silva, Danilo P. & Félix Salles, José L. & Fardin, Jussara F. & Rocha Pereira, Maxsuel M., 2020. "Management of an island and grid-connected microgrid using hybrid economic model predictive control with weather data," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Linfei & Zheng, Da, 2024. "Decomposition prediction fractional-order PID reinforcement learning for short-term smart generation control of integrated energy systems," Applied Energy, Elsevier, vol. 355(C).
    2. Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).
    3. Yin, Linfei & Zhang, Bin, 2023. "Relaxed deep generative adversarial networks for real-time economic smart generation dispatch and control of integrated energy systems," Applied Energy, Elsevier, vol. 330(PA).
    4. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    5. Han, Kunlun & Yang, Kai & Yin, Linfei, 2022. "Lightweight actor-critic generative adversarial networks for real-time smart generation control of microgrids," Applied Energy, Elsevier, vol. 317(C).
    6. Yin, Linfei & Li, Yu, 2022. "Hybrid multi-agent emotional deep Q network for generation control of multi-area integrated energy systems," Applied Energy, Elsevier, vol. 324(C).
    7. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Shi, Lin & Li, Bingkang, 2023. "TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties," Energy, Elsevier, vol. 284(C).
    8. Yin, Linfei & Zhao, Lulin, 2021. "Rejectable deep differential dynamic programming for real-time integrated generation dispatch and control of micro-grids," Energy, Elsevier, vol. 225(C).
    9. Yin, Linfei & Lin, Chen, 2024. "Matrix Wasserstein distance generative adversarial network with gradient penalty for fast low-carbon economic dispatch of novel power systems," Energy, Elsevier, vol. 298(C).
    10. Yin, Linfei & Zhang, Bin, 2021. "Time series generative adversarial network controller for long-term smart generation control of microgrids," Applied Energy, Elsevier, vol. 281(C).
    11. Ansari, Zafar Ayub & Raja, G. Lloyds, 2024. "Enhanced cascaded frequency controller optimized by flow direction algorithm for seaport hybrid microgrid powered by renewable energies," Applied Energy, Elsevier, vol. 374(C).
    12. Flores, Francisco & Feijoo, Felipe & DeStephano, Paelina & Herc, Luka & Pfeifer, Antun & Duić, Neven, 2024. "Assessment of the impacts of renewable energy variability in long-term decarbonization strategies," Applied Energy, Elsevier, vol. 368(C).
    13. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    14. Shuo Huang & Xinyu Wu & Yiyang Wu & Zheng Zhang, 2023. "Mid-Term Optimal Scheduling of Low-Head Cascaded Hydropower Stations Considering Inflow Unevenness," Energies, MDPI, vol. 16(17), pages 1-13, September.
    15. Ahmed I. Omar & Ziad M. Ali & Mostafa Al-Gabalawy & Shady H. E. Abdel Aleem & Mujahed Al-Dhaifallah, 2020. "Multi-Objective Environmental Economic Dispatch of an Electricity System Considering Integrated Natural Gas Units and Variable Renewable Energy Sources," Mathematics, MDPI, vol. 8(7), pages 1-37, July.
    16. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    17. O., Yugeswar Reddy & J., Jithendranath & Chakraborty, Ajoy Kumar & Guerrero, Josep M., 2022. "Stochastic optimal power flow in islanded DC microgrids with correlated load and solar PV uncertainties," Applied Energy, Elsevier, vol. 307(C).
    18. Ahmed O. Badr & Abdulsalam A. Aloukili & Metwally A. El-Sharkawy & Mariam A. Sameh & Mahmoud A. Attia, 2022. "Compensation of Distributed Generations Outage Using Controlled Switched Capacitors," Sustainability, MDPI, vol. 14(23), pages 1-24, December.
    19. Erol, Özge & Başaran Filik, Ümmühan, 2022. "A Stackelberg game approach for energy sharing management of a microgrid providing flexibility to entities," Applied Energy, Elsevier, vol. 316(C).
    20. Takele Ferede Agajie & Armand Fopah-Lele & Isaac Amoussou & Ahmed Ali & Baseem Khan & Emmanuel Tanyi, 2023. "Optimal Design and Mathematical Modeling of Hybrid Solar PV–Biogas Generator with Energy Storage Power Generation System in Multi-Objective Function Cases," Sustainability, MDPI, vol. 15(10), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124006955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.