IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v382y2025ics0306261924026345.html
   My bibliography  Save this article

Multi-factor aging in Lithium Iron phosphate batteries: Mechanisms and insights

Author

Listed:
  • Xiong, Rui
  • Wang, Peng
  • Jia, Yanbo
  • Shen, Weixiang
  • Sun, Fengchun

Abstract

Lithium-ion batteries are extensively employed in transportation and the integration of renewable energy sources. However, the aging process significantly impacts their performance, and the mechanisms behind this aging during operation are not completely understood. This study involved designing a 5-factor, 3-level orthogonal experiment with commercial lithium iron phosphate (LFP) batteries to assess the factors associated with aging and to clarify the aging mechanisms. The factors examined included environmental temperature (T), charging current (Ichg), discharging current (Idis), charging voltage limit (Vchg), and discharging voltage limit (Vdis). The findings indicated that the factors affecting the degradation of battery performance, ranked from most to least influential, are T, Vchg, Ichg, Idis, and Vdis. We quantitatively analyzed the degradation mechanisms using a new half-cell model at a temperature of 25 °C. This model significantly improved accuracy, achieving a 28.1 % reduction in root mean square error and substantial decreases in relative errors of 92.5 %, 61.5 %, and 98.9 % at critical points that outline the voltage curve. The analysis revealed that the degradation of active materials in the negative and positive electrodes accelerates with higher charging current and charging voltage limit, respectively. These insights can provide useful guidance for accelerated aging research and effective lifespan management of LFP batteries.

Suggested Citation

  • Xiong, Rui & Wang, Peng & Jia, Yanbo & Shen, Weixiang & Sun, Fengchun, 2025. "Multi-factor aging in Lithium Iron phosphate batteries: Mechanisms and insights," Applied Energy, Elsevier, vol. 382(C).
  • Handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924026345
    DOI: 10.1016/j.apenergy.2024.125250
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924026345
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Zhong-kai & Niu, Wen-jing & Cheng, Chun-tian & Liao, Sheng-li, 2017. "Hydropower system operation optimization by discrete differential dynamic programming based on orthogonal experiment design," Energy, Elsevier, vol. 126(C), pages 720-732.
    2. Tang, Jinchen & Gong, Guangcai & Su, Huan & Wu, Fanhao & Herman, Cila, 2016. "Performance evaluation of a novel method of frost prevention and retardation for air source heat pumps using the orthogonal experiment design method," Applied Energy, Elsevier, vol. 169(C), pages 696-708.
    3. Tian, Yu & Lin, Cheng & Li, Hailong & Du, Jiuyu & Xiong, Rui, 2021. "Detecting undesired lithium plating on anodes for lithium-ion batteries – A review on the in-situ methods," Applied Energy, Elsevier, vol. 300(C).
    4. Jalkanen, K. & Karppinen, J. & Skogström, L. & Laurila, T. & Nisula, M. & Vuorilehto, K., 2015. "Cycle aging of commercial NMC/graphite pouch cells at different temperatures," Applied Energy, Elsevier, vol. 154(C), pages 160-172.
    5. Wu, Yifei & Zhao, Hongxia & Zhang, Cunquan & Wang, Lei & Han, Jitian, 2018. "Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test," Energy, Elsevier, vol. 151(C), pages 79-93.
    6. Xiong, Rui & Pan, Yue & Shen, Weixiang & Li, Hailong & Sun, Fengchun, 2020. "Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    2. Li, Zengwen & Zhao, Hongxia & Han, Jitian & Wang, Xinli & Zhu, Jie, 2020. "Performance optimization of the dehumidifier with parallel-plate membrane modules," Energy, Elsevier, vol. 194(C).
    3. Yun Bao & Yuansheng Chen, 2021. "Lithium-Ion Battery Real-Time Diagnosis with Direct Current Impedance Spectroscopy," Energies, MDPI, vol. 14(15), pages 1-16, July.
    4. Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
    5. Das, Kaushik & Kumar, Roushan & Krishna, Anurup, 2024. "Analyzing electric vehicle battery health performance using supervised machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Yuhong Wang & Lei Chen & Hong Zhou & Xu Zhou & Zongsheng Zheng & Qi Zeng & Li Jiang & Liang Lu, 2021. "Flexible Transmission Network Expansion Planning Based on DQN Algorithm," Energies, MDPI, vol. 14(7), pages 1-21, April.
    7. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    8. Zhang, Feng & Cai, Jingyong & Ji, Jie & Han, Kedong & Ke, Wei, 2020. "Experimental investigation on the heating and cooling performance of a solar air composite heat source heat pump," Renewable Energy, Elsevier, vol. 161(C), pages 221-229.
    9. Xiong, Rui & Pan, Yue & Shen, Weixiang & Li, Hailong & Sun, Fengchun, 2020. "Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Li, Sihui & Gong, Guangcai & Peng, Jinqing, 2019. "Dynamic coupling method between air-source heat pumps and buildings in China’s hot-summer/cold-winter zone," Applied Energy, Elsevier, vol. 254(C).
    11. Sai Vinayak Ganesh & Matilde D’Arpino, 2023. "Critical Comparison of Li-Ion Aging Models for Second Life Battery Applications," Energies, MDPI, vol. 16(7), pages 1-23, March.
    12. Llorenç Macia & Robert Castilla & Pedro Javier Gamez-Montero & Gustavo Raush, 2022. "Multi-Factor Design for a Vacuum Ejector Improvement by In-Depth Analysis of Construction Parameters," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    13. Giovanni Mazzuto & Filippo Emanuele Ciarapica & Marco Ortenzi & Maurizio Bevilacqua, 2021. "The Digital Twin Realization of an Ejector for Multiphase Flows," Energies, MDPI, vol. 14(17), pages 1-23, September.
    14. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Shi, Can & Lv, Chen, 2019. "A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system," Energy, Elsevier, vol. 175(C), pages 46-57.
    15. Fan, Chuanxin & O’Regan, Kieran & Li, Liuying & Higgins, Matthew D. & Kendrick, Emma & Widanage, Widanalage D., 2022. "Data-driven identification of lithium-ion batteries: A nonlinear equivalent circuit model with diffusion dynamics," Applied Energy, Elsevier, vol. 321(C).
    16. Dapai Shi & Jingyuan Zhao & Chika Eze & Zhenghong Wang & Junbin Wang & Yubo Lian & Andrew F. Burke, 2023. "Cloud-Based Artificial Intelligence Framework for Battery Management System," Energies, MDPI, vol. 16(11), pages 1-21, May.
    17. Shanshan Guo & Zhiqiang Han & Jun Wei & Shenggang Guo & Liang Ma, 2022. "A Novel DC-AC Fast Charging Technology for Lithium-Ion Power Battery at Low-Temperatures," Sustainability, MDPI, vol. 14(11), pages 1-10, May.
    18. Zhang, Cetengfei & Zhou, Quan & Hua, Min & Xu, Hongming & Bassett, Mike & Zhang, Fanggang, 2023. "Cuboid equivalent consumption minimization strategy for energy management of multi-mode plug-in hybrid vehicles considering diverse time scale objectives," Applied Energy, Elsevier, vol. 351(C).
    19. An, Zhoujian & Zhao, Yabing & Du, Xiaoze & Shi, Tianlu & Zhang, Dong, 2023. "Experimental research on thermal-electrical behavior and mechanism during external short circuit for LiFePO4 Li-ion battery," Applied Energy, Elsevier, vol. 332(C).
    20. Ming, Bo & Liu, Pan & Guo, Shenglian & Zhang, Xiaoqi & Feng, Maoyuan & Wang, Xianxun, 2017. "Optimizing utility-scale photovoltaic power generation for integration into a hydropower reservoir by incorporating long- and short-term operational decisions," Applied Energy, Elsevier, vol. 204(C), pages 432-445.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924026345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.