IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v224y2021ics036054422100390x.html
   My bibliography  Save this article

Supporting decision-making for heating and distribution systems in a new residential district - An Austrian case study

Author

Listed:
  • Dermentzis, Georgios
  • Ochs, Fabian
  • Thuer, Alexander
  • Streicher, Wolfgang

Abstract

A new residential district will be built in Innsbruck, Austria. The energy and environmental impact are considered during the decision-making procedure. A complete and comprehensive simulation study was performed to develop a decision support tool with respect to a) which type of heating system i.e. heat pumps, connection to district heating, or natural gas boilers, b) which level of centralization of the heating system i.e. from one central solution for the entire district up to decentral systems located in each flat, c) which type of heat distribution system and d) the corresponding pipe insulation level. To compare the aforementioned combinations, various key performance indicators were calculated, using two different calculation methods: one with annual and one with monthly conversion factors. The results show that the use of heat pumps or district heating instead of gas boilers decreases the carbon emissions by a maximum of 75% and 52%, respectively. The choice of the appropriate key performance indicator and calculation method had a minor influence on the ranking of the investigated solutions but a significant influence on the quantitative results.

Suggested Citation

  • Dermentzis, Georgios & Ochs, Fabian & Thuer, Alexander & Streicher, Wolfgang, 2021. "Supporting decision-making for heating and distribution systems in a new residential district - An Austrian case study," Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:energy:v:224:y:2021:i:c:s036054422100390x
    DOI: 10.1016/j.energy.2021.120141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422100390X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hervas-Blasco, Estefanía & Pitarch, Miquel & Navarro-Peris, Emilio & Corberán, José M., 2017. "Optimal sizing of a heat pump booster for sanitary hot water production to maximize benefit for the substitution of gas boilers," Energy, Elsevier, vol. 127(C), pages 558-570.
    2. Nord, Natasa & Løve Nielsen, Elise Kristine & Kauko, Hanne & Tereshchenko, Tymofii, 2018. "Challenges and potentials for low-temperature district heating implementation in Norway," Energy, Elsevier, vol. 151(C), pages 889-902.
    3. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    4. Ziemele, Jelena & Gravelsins, Armands & Blumberga, Andra & Vigants, Girts & Blumberga, Dagnija, 2016. "System dynamics model analysis of pathway to 4th generation district heating in Latvia," Energy, Elsevier, vol. 110(C), pages 85-94.
    5. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    6. Persson, Urban & Werner, Sven, 2011. "Heat distribution and the future competitiveness of district heating," Applied Energy, Elsevier, vol. 88(3), pages 568-576, March.
    7. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    8. Dalla Rosa, A. & Boulter, R. & Church, K. & Svendsen, S., 2012. "District heating (DH) network design and operation toward a system-wide methodology for optimizing renewable energy solutions (SMORES) in Canada: A case study," Energy, Elsevier, vol. 45(1), pages 960-974.
    9. Vaillant Rebollar, Julio Efrain & Himpe, Eline & Laverge, Jelle & Janssens, Arnold, 2017. "Sensitivity analysis of heat losses in collective heat distribution systems using an improved method of EPBD calculations," Energy, Elsevier, vol. 140(P1), pages 850-860.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabian Ochs & Mara Magni & Georgios Dermentzis, 2022. "Integration of Heat Pumps in Buildings and District Heating Systems—Evaluation on a Building and Energy System Level," Energies, MDPI, vol. 15(11), pages 1-33, May.
    2. Cui, Ye & E, Hanyu & Pedrycz, Witold & Fayek, Aminah Robinson, 2022. "A granular multicriteria group decision making for renewable energy planning problems," Renewable Energy, Elsevier, vol. 199(C), pages 1047-1059.
    3. Yu, Lu & Wu, Shuang & Jiang, Lu & Ding, Bowenpeng & Shi, Xiaonan, 2022. "Do more efficient buildings lead to lower household energy consumption for cooling? Evidence from Guangzhou, China," Energy Policy, Elsevier, vol. 168(C).
    4. Matschegg, Doris & Carlon, Elisa & Sturmlechner, Rita & Sonnleitner, Andrea & Fuhrmann, Marilene & Dißauer, Christa & Strasser, Christoph & Enigl, Monika, 2023. "Investigation of individual motives and decision paths on residential energy supply systems," Energy, Elsevier, vol. 281(C).
    5. Zhu, Tingting & Ommen, Torben & Meesenburg, Wiebke & Thorsen, Jan Eric & Elmegaard, Brian, 2021. "Steady state behavior of a booster heat pump for hot water supply in ultra-low temperature district heating network," Energy, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    2. Alessandro Guzzini & Marco Pellegrini & Edoardo Pelliconi & Cesare Saccani, 2020. "Low Temperature District Heating: An Expert Opinion Survey," Energies, MDPI, vol. 13(4), pages 1-34, February.
    3. Lorenzen, Peter & Alvarez-Bel, Carlos, 2022. "Variable cost evaluation of heating plants in district heating systems considering the temperature impact," Applied Energy, Elsevier, vol. 305(C).
    4. Milad Khosravi & Ahmad Arabkoohsar, 2019. "Thermal-Hydraulic Performance Analysis of Twin-Pipes for Various Future District Heating Schemes," Energies, MDPI, vol. 12(7), pages 1-17, April.
    5. Averfalk, Helge & Werner, Sven, 2018. "Novel low temperature heat distribution technology," Energy, Elsevier, vol. 145(C), pages 526-539.
    6. Leurent, Martin & Da Costa, Pascal & Jasserand, Frédéric & Rämä, Miika & Persson, Urban, 2018. "Cost and climate savings through nuclear district heating in a French urban area," Energy Policy, Elsevier, vol. 115(C), pages 616-630.
    7. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    8. Billerbeck, Anna & Breitschopf, Barbara & Winkler, Jenny & Bürger, Veit & Köhler, Benjamin & Bacquet, Alexandre & Popovski, Eftim & Fallahnejad, Mostafa & Kranzl, Lukas & Ragwitz, Mario, 2023. "Policy frameworks for district heating: A comprehensive overview and analysis of regulations and support measures across Europe," Energy Policy, Elsevier, vol. 173(C).
    9. Ziemele, Jelena & Gravelsins, Armands & Blumberga, Andra & Blumberga, Dagnija, 2017. "Sustainability of heat energy tariff in district heating system: Statistic and dynamic methodologies," Energy, Elsevier, vol. 137(C), pages 834-845.
    10. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    11. Baldvinsson, Ivar & Nakata, Toshihiko, 2016. "A feasibility and performance assessment of a low temperature district heating system – A North Japanese case study," Energy, Elsevier, vol. 95(C), pages 155-174.
    12. Averfalk, Helge & Werner, Sven, 2020. "Economic benefits of fourth generation district heating," Energy, Elsevier, vol. 193(C).
    13. Nord, Natasa & Shakerin, Mohammad & Tereshchenko, Tymofii & Verda, Vittorio & Borchiellini, Romano, 2021. "Data informed physical models for district heating grids with distributed heat sources to understand thermal and hydraulic aspects," Energy, Elsevier, vol. 222(C).
    14. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    15. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    16. Pakere, Ieva & Gravelsins, Armands & Lauka, Dace & Bazbauers, Gatis & Blumberga, Dagnija, 2021. "Linking energy efficiency policies toward 4th generation district heating system," Energy, Elsevier, vol. 234(C).
    17. Muhammad Faizan Tahir & Haoyong Chen & Muhammad Sufyan Javed & Irfan Jameel & Asad Khan & Saifullah Adnan, 2019. "Integration of Different Individual Heating Scenarios and Energy Storages into Hybrid Energy System Model of China for 2030," Energies, MDPI, vol. 12(11), pages 1-20, May.
    18. Leurent, Martin & Da Costa, Pascal & Rämä, Miika & Persson, Urban & Jasserand, Frédéric, 2018. "Cost-benefit analysis of district heating systems using heat from nuclear plants in seven European countries," Energy, Elsevier, vol. 149(C), pages 454-472.
    19. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    20. Benakopoulos, Theofanis & Tunzi, Michele & Salenbien, Robbe & Hansen, Kasper Klan & Svendsen, Svend, 2022. "Implementation of a strategy for low-temperature operation of radiator systems using data from existing digital heat cost allocators," Energy, Elsevier, vol. 251(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:224:y:2021:i:c:s036054422100390x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.