IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v210y2020ics0360544220315942.html
   My bibliography  Save this article

The Gouy-Stodola Theorem and the derivation of exergy revised

Author

Listed:
  • Reini, Mauro
  • Casisi, Melchiorre

Abstract

The Gouy-Stodola Theorem is the theoretical basis for allocating irreversibility and for identifying the maximum possible efficiency for any kind of energy conversion system. The well-known theorem is re-obtained in this paper, relaxing the hypothesis about a constant value for temperature and pressure of the reference environment. The equations that have been derived taking into account the variation of reference temperature and pressure show that two additional terms appear in both reversible and irreversible maximum useful work output, besides the well-known terms. These additional terms take into account the potential useful work (exergy) destruction related to the variation of the ambient condition during the considered time interval. In this way the Gouy-Stodola Theorem still holds, but the allocation of exergy destruction is generally different from that calculated in the usual hypothesis of constant temperature and pressure of the reference environment. The Gouy-Stodola Theorem is also used in various textbooks for defining the flow and the non-exergy of a control volume. The same approach is applied in this paper, highlighting the differences and the difficulties related to the variation of the reference pressure and temperature in the reference environment.

Suggested Citation

  • Reini, Mauro & Casisi, Melchiorre, 2020. "The Gouy-Stodola Theorem and the derivation of exergy revised," Energy, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220315942
    DOI: 10.1016/j.energy.2020.118486
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220315942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118486?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsatsaronis, George, 2007. "Definitions and nomenclature in exergy analysis and exergoeconomics," Energy, Elsevier, vol. 32(4), pages 249-253.
    2. Valentina Bonetti & Georgios Kokogiannakis, 2017. "Dynamic Exergy Analysis for the Thermal Storage Optimization of the Building Envelope," Energies, MDPI, vol. 10(1), pages 1-19, January.
    3. Göǧüş, Yalçın A. & Çamdalı, Ünal & Kavsaoğlu, Mehmet Ş., 2002. "Exergy balance of a general system with variation of environmental conditions and some applications," Energy, Elsevier, vol. 27(7), pages 625-646.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ronelly De Souza & Melchiorre Casisi & Diego Micheli & Mauro Reini, 2021. "A Review of Small–Medium Combined Heat and Power (CHP) Technologies and Their Role within the 100% Renewable Energy Systems Scenario," Energies, MDPI, vol. 14(17), pages 1-30, August.
    2. Eduardo Rodríguez & José M. Cardemil & Allan R. Starke & Rodrigo Escobar, 2022. "Modelling the Exergy of Solar Radiation: A Review," Energies, MDPI, vol. 15(4), pages 1-26, February.
    3. Sobhy Khedr & Melchiorre Casisi & Mauro Reini, 2022. "The Thermoeconomic Environment Cost Indicator (i ex-TEE ) as a One-Dimensional Measure of Resource Sustainability," Energies, MDPI, vol. 15(6), pages 1-14, March.
    4. Casisi, Melchiorre & Khedr, Sobhy & Reini, Mauro, 2023. "The Thermoeconomic Environment and the exergy-based cost accounting of technological and biological systems," Energy, Elsevier, vol. 262(PA).
    5. Mardan Dezfouli, Amir Hossein & Niroozadeh, Narjes & Jahangiri, Ali, 2023. "Energy, exergy, and exergoeconomic analysis and multi-objective optimization of a novel geothermal driven power generation system of combined transcritical CO2 and C5H12 ORCs coupled with LNG stream i," Energy, Elsevier, vol. 262(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Pons, 2019. "Exergy Analysis and Process Optimization with Variable Environment Temperature," Energies, MDPI, vol. 12(24), pages 1-19, December.
    2. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-López & Mathias Glaus & Sara Patricia Ibarra-Zavaleta, 2018. "An Overview of Energy and Exergy Analysis to the Industrial Sector, a Contribution to Sustainability," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    3. Loha, Chanchal & Chattopadhyay, Himadri & Chatterjee, Pradip K., 2011. "Thermodynamic analysis of hydrogen rich synthetic gas generation from fluidized bed gasification of rice husk," Energy, Elsevier, vol. 36(7), pages 4063-4071.
    4. Li, Chengchen & Wang, Huanran & He, Xin & Zhang, Yan, 2022. "Experimental and thermodynamic investigation on isothermal performance of large-scaled liquid piston," Energy, Elsevier, vol. 249(C).
    5. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    6. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    7. Silveira, Jose Luz & Lamas, Wendell de Queiroz & Tuna, Celso Eduardo & Villela, Iraides Aparecida de Castro & Miro, Laura Siso, 2012. "Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2894-2906.
    8. Liu, Chenglin & Zhao, Lei & Zhu, Shun & Shen, Yuefeng & Yu, Jianhua & Yang, Qingchun, 2023. "Advanced exergy analysis and optimization of a coal to ethylene glycol (CtEG) process," Energy, Elsevier, vol. 282(C).
    9. Coban, Kahraman & Şöhret, Yasin & Colpan, C. Ozgur & Karakoç, T. Hikmet, 2017. "Exergetic and exergoeconomic assessment of a small-scale turbojet fuelled with biodiesel," Energy, Elsevier, vol. 140(P2), pages 1358-1367.
    10. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    11. Miladi, Rihab & Frikha, Nader & Gabsi, Slimane, 2017. "Exergy analysis of a solar-powered vacuum membrane distillation unit using two models," Energy, Elsevier, vol. 120(C), pages 872-883.
    12. Gao, Jintong & Zhang, Qi & Wang, Xiaozhuang & Song, Dayong & Liu, Weiqi & Liu, Wenchao, 2018. "Exergy and exergoeconomic analyses with modeling for CO2 allocation of coal-fired CHP plants," Energy, Elsevier, vol. 152(C), pages 562-575.
    13. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    14. Nondy, J. & Gogoi, T.K., 2021. "Performance comparison of multi-objective evolutionary algorithms for exergetic and exergoenvironomic optimization of a benchmark combined heat and power system," Energy, Elsevier, vol. 233(C).
    15. Min-Ju Jeon, 2022. "Experimental Analysis of the R744/R404A Cascade Refrigeration System with Internal Heat Exchanger. Part 2: Exergy Characteristics," Energies, MDPI, vol. 15(3), pages 1-20, February.
    16. Dario Méndez-Méndez & Vicente Pérez-García & Juan M. Belman-Flores & José M. Riesco-Ávila & Juan M. Barroso-Maldonado, 2022. "Internal Heat Exchanger Influence in Operational Cost and Environmental Impact of an Experimental Installation Using Low GWP Refrigerant for HVAC Conditions," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    17. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    18. La Rocca, Vincenzo, 2011. "Cold recovery during regasification of LNG part two: Applications in an Agro Food Industry and a Hypermarket," Energy, Elsevier, vol. 36(8), pages 4897-4908.
    19. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    20. Akbulut, Ugur & Utlu, Zafer & Kincay, Olcay, 2016. "Exergy, exergoenvironmental and exergoeconomic evaluation of a heat pump-integrated wall heating system," Energy, Elsevier, vol. 107(C), pages 502-522.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220315942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.