IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p2820-2827.html
   My bibliography  Save this article

Exergy-based indicators to evaluate the possibilities to reduce fuel consumption in lime production

Author

Listed:
  • Gutiérrez, Alexis Sagastume
  • Vandecasteele, Carlo

Abstract

A new way to evaluate the energetic performance of lime shaft kilns is proposed. Two new exergy-based indicators are introduced for the evaluation, one to assess the exergy efficiency of limekilns and the other indicator to assess the effectiveness of the exergy consumption of the dissociation reaction. The combination of both indicators provides a clear picture of the energetic performance of the process, highlighting the main potentialities for fuel saving (fuel consumption represents about 50% of total production costs).

Suggested Citation

  • Gutiérrez, Alexis Sagastume & Vandecasteele, Carlo, 2011. "Exergy-based indicators to evaluate the possibilities to reduce fuel consumption in lime production," Energy, Elsevier, vol. 36(5), pages 2820-2827.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2820-2827
    DOI: 10.1016/j.energy.2011.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211001010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Valero, A., 2006. "Exergy accounting: Capabilities and drawbacks," Energy, Elsevier, vol. 31(1), pages 164-180.
    2. Tsatsaronis, George, 2007. "Definitions and nomenclature in exergy analysis and exergoeconomics," Energy, Elsevier, vol. 32(4), pages 249-253.
    3. Lozano, M.A. & Valero, A., 1993. "Theory of the exergetic cost," Energy, Elsevier, vol. 18(9), pages 939-960.
    4. Lior, Noam & Zhang, Na, 2007. "Energy, exergy, and Second Law performance criteria," Energy, Elsevier, vol. 32(4), pages 281-296.
    5. Verda, Vittorio & Serra, Luis & Valero, Antonio, 2004. "The effects of the control system on the thermoeconomic diagnosis of a power plant," Energy, Elsevier, vol. 29(3), pages 331-359.
    6. Kelly, S. & Tsatsaronis, G. & Morosuk, T., 2009. "Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts," Energy, Elsevier, vol. 34(3), pages 384-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rehfeldt, M. & Worrell, E. & Eichhammer, W. & Fleiter, T., 2020. "A review of the emission reduction potential of fuel switch towards biomass and electricity in European basic materials industry until 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Querol, E. & Gonzalez-Regueral, B. & Ramos, A. & Perez-Benedito, J.L., 2011. "Novel application for exergy and thermoeconomic analysis of processes simulated with Aspen Plus®," Energy, Elsevier, vol. 36(2), pages 964-974.
    2. Picallo-Perez, Ana & Catrini, Pietro & Piacentino, Antonio & Sala, José-Mª, 2019. "A novel thermoeconomic analysis under dynamic operating conditions for space heating and cooling systems," Energy, Elsevier, vol. 180(C), pages 819-837.
    3. Miladi, Rihab & Frikha, Nader & Gabsi, Slimane, 2017. "Exergy analysis of a solar-powered vacuum membrane distillation unit using two models," Energy, Elsevier, vol. 120(C), pages 872-883.
    4. Piacentino, Antonio & Cardona, Fabio, 2010. "Scope-Oriented Thermoeconomic analysis of energy systems. Part I: Looking for a non-postulated cost accounting for the dissipative devices of a vapour compression chiller. Is it feasible?," Applied Energy, Elsevier, vol. 87(3), pages 943-956, March.
    5. He, Tianbiao & Lv, Hongyu & Shao, Zixian & Zhang, Jibao & Xing, Xialian & Ma, Huigang, 2020. "Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling," Applied Energy, Elsevier, vol. 277(C).
    6. Torres, César & Valero, Antonio & Valero, Alicia, 2013. "Exergoecology as a tool for ecological modelling. The case of the US food production chain," Ecological Modelling, Elsevier, vol. 255(C), pages 21-28.
    7. Verda, Vittorio & Borchiellini, Romano, 2007. "Exergy method for the diagnosis of energy systems using measured data," Energy, Elsevier, vol. 32(4), pages 490-498.
    8. Deng, Jian & Wang, Ruzhu & Wu, Jingyi & Han, Guyong & Wu, Dawei & Li, Sheng, 2008. "Exergy cost analysis of a micro-trigeneration system based on the structural theory of thermoeconomics," Energy, Elsevier, vol. 33(9), pages 1417-1426.
    9. Bagdanavicius, Audrius & Jenkins, Nick & Hammond, Geoffrey P., 2012. "Assessment of community energy supply systems using energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 247-255.
    10. Zaleta-Aguilar, Alejandro & Olivares-Arriaga, Abraham & Cano-Andrade, Sergio & Rodriguez-Alejandro, David A., 2016. "β-characterization by irreversibility analysis: A thermoeconomic diagnosis method," Energy, Elsevier, vol. 111(C), pages 850-858.
    11. Turan, Onder & Aydin, Hakan, 2014. "Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine," Energy, Elsevier, vol. 74(C), pages 638-650.
    12. San, J.-Y., 2010. "Second-law performance of heat exchangers for waste heat recovery," Energy, Elsevier, vol. 35(5), pages 1936-1945.
    13. Verda, Vittorio, 2006. "Accuracy level in thermoeconomic diagnosis of energy systems," Energy, Elsevier, vol. 31(15), pages 3248-3260.
    14. Şöhret, Yasin & Açıkkalp, Emin & Hepbasli, Arif & Karakoc, T. Hikmet, 2015. "Advanced exergy analysis of an aircraft gas turbine engine: Splitting exergy destructions into parts," Energy, Elsevier, vol. 90(P2), pages 1219-1228.
    15. Erbay, Zafer & Hepbasli, Arif, 2017. "Assessment of cost sources and improvement potentials of a ground-source heat pump food drying system through advanced exergoeconomic analysis method," Energy, Elsevier, vol. 127(C), pages 502-515.
    16. Balli, Ozgur, 2017. "Advanced exergy analyses of an aircraft turboprop engine (TPE)," Energy, Elsevier, vol. 124(C), pages 599-612.
    17. Bilgen, Selçuk & Kaygusuz, Kamil, 2008. "The calculation of the chemical exergies of coal-based fuels by using the higher heating values," Applied Energy, Elsevier, vol. 85(8), pages 776-785, August.
    18. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    19. Adrian Bejan & George Tsatsaronis, 2021. "Purpose in Thermodynamics," Energies, MDPI, vol. 14(2), pages 1-25, January.
    20. Cassetti, G. & Rocco, M.V. & Colombo, E., 2014. "Exergy based methods for economic and risk design optimization of energy systems: Application to a gas turbine," Energy, Elsevier, vol. 74(C), pages 269-279.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2820-2827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.