IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics0306261919317982.html
   My bibliography  Save this article

Optimization potential index (OPI): An evaluation method for performance assessment and optimization potential of chillers in HVAC plants

Author

Listed:
  • Brenner, Lorenz
  • Tillenkamp, Frank
  • Krütli, Markus
  • Ghiaus, Christian

Abstract

Exergy analysis allows us to determine the quality of energy sources and losses due to irreversibilities through a system. However, the quantification of possible improvements as compared with the state of the art in technology is complicated. Typically, it is referred to the thermodynamic ideal, which is not achievable in practice. Therefore, this paper introduces the exergy optimization potential index, a new key figure based on exergy analysis and technical standard values, in order to assess the achievable performance and to determine possible improvements in vapor compression refrigeration plants with cold water distribution. By dividing the plant into different subsystems (dry cooler, refrigeration machine, cold storage & transport and cooling location), each of them can be assessed individually. Furthermore, by comparing the actual exergy effort with reference values, the interpretation of the results becomes straightforward. The applicability of the method is demonstrated on two theoretical test cases and on a real system. The investigated refrigeration plant performs well in general, which is revealed with an average optimization potential index inferior to 0. However, the subsystem dry cooler shows potential for improvement in the period of May to mid of July. Also, three out of seven cooling locations have performance issues, which is indicated with an average optimization potential index of at least 0.07. Overall, the electrical exergy input has a major impact on the optimization potential index. This reveals the importance of minimizing the electrical energy usage, as it is the main overhead in the operating cost of refrigeration plants.

Suggested Citation

  • Brenner, Lorenz & Tillenkamp, Frank & Krütli, Markus & Ghiaus, Christian, 2020. "Optimization potential index (OPI): An evaluation method for performance assessment and optimization potential of chillers in HVAC plants," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919317982
    DOI: 10.1016/j.apenergy.2019.114111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919317982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Menberg, Kathrin & Heo, Yeonsook & Choi, Wonjun & Ooka, Ryozo & Choudhary, Ruchi & Shukuya, Masanori, 2017. "Exergy analysis of a hybrid ground-source heat pump system," Applied Energy, Elsevier, vol. 204(C), pages 31-46.
    2. Schweiker, Marcel & Shukuya, Masanori, 2010. "Comparative effects of building envelope improvements and occupant behavioural changes on the exergy consumption for heating and cooling," Energy Policy, Elsevier, vol. 38(6), pages 2976-2986, June.
    3. Bi, Yuehong & Wang, Xinhong & Liu, Yun & Zhang, Hua & Chen, Lingen, 2009. "Comprehensive exergy analysis of a ground-source heat pump system for both building heating and cooling modes," Applied Energy, Elsevier, vol. 86(12), pages 2560-2565, December.
    4. Valentina Bonetti & Georgios Kokogiannakis, 2017. "Dynamic Exergy Analysis for the Thermal Storage Optimization of the Building Envelope," Energies, MDPI, vol. 10(1), pages 1-19, January.
    5. Razmara, M. & Maasoumy, M. & Shahbakhti, M. & Robinett, R.D., 2015. "Optimal exergy control of building HVAC system," Applied Energy, Elsevier, vol. 156(C), pages 555-565.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brenner, Lorenz & Tillenkamp, Frank & Ghiaus, Christian, 2020. "Exergy performance and optimization potential of refrigeration plants in free cooling operation," Energy, Elsevier, vol. 209(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    2. Brenner, Lorenz & Tillenkamp, Frank & Ghiaus, Christian, 2020. "Exergy performance and optimization potential of refrigeration plants in free cooling operation," Energy, Elsevier, vol. 209(C).
    3. Kazanci, Ongun B. & Shukuya, Masanori, 2022. "A theoretical study of the effects of different heating loads on the exergy performance of water-based and air-based space heating systems in buildings," Energy, Elsevier, vol. 238(PC).
    4. Agata Rijs & Tomasz Mróz, 2019. "Exergy Evaluation of a Heat Supply System with Vapor Compression Heat Pumps," Energies, MDPI, vol. 12(6), pages 1-19, March.
    5. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    6. Michele Roccotelli & Alessandro Rinaldi & Maria Pia Fanti & Francesco Iannone, 2020. "Building Energy Management for Passive Cooling Based on Stochastic Occupants Behavior Evaluation," Energies, MDPI, vol. 14(1), pages 1-24, December.
    7. Ozgener, Onder, 2010. "Use of solar assisted geothermal heat pump and small wind turbine systems for heating agricultural and residential buildings," Energy, Elsevier, vol. 35(1), pages 262-268.
    8. Shi, Peng & Wang, Lin-Shu & Schwartz, Paul & Hofbauer, Peter, 2020. "State-wide comparative analysis of the cost saving potential of Vuilleumier heat pumps in residential houses," Applied Energy, Elsevier, vol. 277(C).
    9. Stanek, Wojciech & Simla, Tomasz & Gazda, Wiesław, 2019. "Exergetic and thermo-ecological assessment of heat pump supported by electricity from renewable sources," Renewable Energy, Elsevier, vol. 131(C), pages 404-412.
    10. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    11. Eloisa Di Sipio & David Bertermann, 2017. "Factors Influencing the Thermal Efficiency of Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 10(11), pages 1-21, November.
    12. Du, Jun & Bansal, Pradeep & Huang, Bo, 2012. "Simulation model of a greenhouse with a heat-pipe heating system," Applied Energy, Elsevier, vol. 93(C), pages 268-276.
    13. George M. Stavrakakis & Dimitris Al. Katsaprakakis & Markos Damasiotis, 2021. "Basic Principles, Most Common Computational Tools, and Capabilities for Building Energy and Urban Microclimate Simulations," Energies, MDPI, vol. 14(20), pages 1-41, October.
    14. Sarran, Lucile & Gunay, H. Burak & O'Brien, William & Hviid, Christian A. & Rode, Carsten, 2021. "A data-driven study of thermostat overrides during demand response events," Energy Policy, Elsevier, vol. 153(C).
    15. Yang, Shiyu & Wan, Man Pun & Chen, Wanyu & Ng, Bing Feng & Dubey, Swapnil, 2021. "Experiment study of machine-learning-based approximate model predictive control for energy-efficient building control," Applied Energy, Elsevier, vol. 288(C).
    16. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    17. Akbulut, Ugur & Utlu, Zafer & Kincay, Olcay, 2016. "Exergy, exergoenvironmental and exergoeconomic evaluation of a heat pump-integrated wall heating system," Energy, Elsevier, vol. 107(C), pages 502-522.
    18. Georgios D. Kontes & Georgios I. Giannakis & Víctor Sánchez & Pablo De Agustin-Camacho & Ander Romero-Amorrortu & Natalia Panagiotidou & Dimitrios V. Rovas & Simone Steiger & Christopher Mutschler & G, 2018. "Simulation-Based Evaluation and Optimization of Control Strategies in Buildings," Energies, MDPI, vol. 11(12), pages 1-23, December.
    19. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    20. Wang, S. & Kim, A.A. & Johnson, E.M., 2017. "Understanding the deterministic and probabilistic business cases for occupant based plug load management strategies in commercial office buildings," Applied Energy, Elsevier, vol. 191(C), pages 398-413.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919317982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.