IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v209y2020ics0360544220315620.html
   My bibliography  Save this article

Production of renewable jet fuel and gasoline range hydrocarbons from catalytic pyrolysis of soapstock over corn cob-derived activated carbons

Author

Listed:
  • Duan, Dengle
  • Zhang, Yayun
  • Wang, Yunpu
  • Lei, Hanwu
  • Wang, Qin
  • Ruan, Roger

Abstract

Selective production of jet fuel and gasoline range hydrocarbons from waste soapstock was achieved for the first time by catalytic pyrolysis over activated carbon catalyst that was prepared via pyrolysis of H3PO4-impregnated corn cob pyrolysis. Experimental results exhibited that the concentration of H3PO4 played an important role in acid groups and porous properties of prepared activated carbon catalyst. The obtained catalyst had a remarkable catalytic performance for C8–C16 aromatics formation with the highest selectivity of 89.97% in the bio-oil. In the meantime, the selectivities of jet fuel and gasoline range hydrocarbons could reach up to 98.78% and 91.03%, respectively. The bio-gas yield was improved with the increase in H3PO4 concentration, pyrolysis temperature and feedstock/activated carbon catalyst ratio, and the highest concentration of H2 (69.90 vol%) was achieved. The optimal reaction condition was at a pyrolysis temperature of 500 °C with a soapstock/ACC4 ratio of 1:1.5. In addition, a possible reaction mechanism was proposed for catalytic pyrolysis of soapstock over activated carbon catalyst. The current work might provide a novel, facile and efficient pathway to directly convert waste soapstock into valuable drop-in jet fuel and gasoline together with production of H2-rich syngas.

Suggested Citation

  • Duan, Dengle & Zhang, Yayun & Wang, Yunpu & Lei, Hanwu & Wang, Qin & Ruan, Roger, 2020. "Production of renewable jet fuel and gasoline range hydrocarbons from catalytic pyrolysis of soapstock over corn cob-derived activated carbons," Energy, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315620
    DOI: 10.1016/j.energy.2020.118454
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220315620
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guo, Feng & Xiu, Zhi-Long & Liang, Zhi-Xia, 2012. "Synthesis of biodiesel from acidified soybean soapstock using a lignin-derived carbonaceous catalyst," Applied Energy, Elsevier, vol. 98(C), pages 47-52.
    2. Balasundram, Vekes & Ibrahim, Norazana & Kasmani, Rafiziana Md. & Isha, Ruzinah & Hamid, Mohd. Kamaruddin Abd. & Hasbullah, Hasrinah & Ali, Roshafima Rasit, 2018. "Catalytic upgrading of sugarcane bagasse pyrolysis vapours over rare earth metal (Ce) loaded HZSM-5: Effect of catalyst to biomass ratio on the organic compounds in pyrolysis oil," Applied Energy, Elsevier, vol. 220(C), pages 787-799.
    3. Sharma, Abhishek & Pareek, Vishnu & Zhang, Dongke, 2015. "Biomass pyrolysis—A review of modelling, process parameters and catalytic studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1081-1096.
    4. Yildiz, Güray & Ronsse, Frederik & Duren, Ruben van & Prins, Wolter, 2016. "Challenges in the design and operation of processes for catalytic fast pyrolysis of woody biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1596-1610.
    5. Keskin, Ali & Gürü, Metin & Altiparmak, Duran & Aydin, Kadir, 2008. "Using of cotton oil soapstock biodiesel–diesel fuel blends as an alternative diesel fuel," Renewable Energy, Elsevier, vol. 33(4), pages 553-557.
    6. Yang, Zixu & Lei, Hanwu & Zhang, Yayun & Qian, Kezhen & Villota, Elmar & Qian, Moriko & Yadavalli, Gayatri & Sun, Hua, 2018. "Production of renewable alkyl-phenols from catalytic pyrolysis of Douglas fir sawdust over biomass-derived activated carbons," Applied Energy, Elsevier, vol. 220(C), pages 426-436.
    7. Saraeian, Alireza & Nolte, Michael W. & Shanks, Brent H., 2019. "Deoxygenation of biomass pyrolysis vapors: Improving clarity on the fate of carbon," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 262-280.
    8. Zhang, Yayun & Duan, Dengle & Lei, Hanwu & Villota, Elmar & Ruan, Roger, 2019. "Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Huang, Yu-Fong & Cheng, Pei-Hsin & Chiueh, Pei-Te & Lo, Shang-Lien, 2017. "Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency," Applied Energy, Elsevier, vol. 204(C), pages 1018-1025.
    10. Lopez, Gartzen & Artetxe, Maite & Amutio, Maider & Bilbao, Javier & Olazar, Martin, 2017. "Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 346-368.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duan, Dengle & Feng, Zhiqiang & Dong, Xiaoyong & Chen, Xiaoru & Zhang, Yayun & Wan, Kun & Wang, Yunpu & Wang, Qin & Xiao, Gengsheng & Liu, Huifan & Ruan, Roger, 2021. "Improving bio-oil quality from low-density polyethylene pyrolysis: Effects of varying activation and pyrolysis parameters," Energy, Elsevier, vol. 232(C).
    2. Md Sumon Reza & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Juntakan Taweekun & Fairuzeta Ja’afar & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hridoy Roy & Md. , 2023. "Ex Situ Catalytic Pyrolysis of Invasive Pennisetum purpureum Grass with Activated Carbon for Upgrading Bio-Oil," Sustainability, MDPI, vol. 15(9), pages 1-20, May.
    3. Zhang, Donghong & Lin, Xiaona & Zhang, Qingfa & Ren, Xiajin & Yu, Wenfan & Cai, Hongzhen, 2020. "Catalytic pyrolysis of wood-plastic composite waste over activated carbon catalyst for aromatics production: Effect of preparation process of activated carbon," Energy, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Dengle & Feng, Zhiqiang & Dong, Xiaoyong & Chen, Xiaoru & Zhang, Yayun & Wan, Kun & Wang, Yunpu & Wang, Qin & Xiao, Gengsheng & Liu, Huifan & Ruan, Roger, 2021. "Improving bio-oil quality from low-density polyethylene pyrolysis: Effects of varying activation and pyrolysis parameters," Energy, Elsevier, vol. 232(C).
    2. Kan, Tao & Strezov, Vladimir & Evans, Tim & He, Jing & Kumar, Ravinder & Lu, Qiang, 2020. "Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Fu, Wenming & Cheng, Yoke Wang & Xu, Dequan & Zhang, Yaning & Wang, Chi-Hwa, 2024. "Reaction synergy of bimetallic catalysts on ZSM-5 support in tailoring plastic pyrolysis for hydrogen and value-added product production," Applied Energy, Elsevier, vol. 372(C).
    5. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    7. Chen, Wei & Fang, Yang & Li, Kaixu & Chen, Zhiqun & Xia, Mingwei & Gong, Meng & Chen, Yingquan & Yang, Haiping & Tu, Xin & Chen, Hanping, 2020. "Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products," Applied Energy, Elsevier, vol. 260(C).
    8. Huo, Erguang & Duan, Dengle & Lei, Hanwu & Liu, Chao & Zhang, Yayun & Wu, Jie & Zhao, Yunfeng & Huang, Zhiyang & Qian, Moriko & Zhang, Qingfa & Lin, Xiaona & Wang, Chenxi & Mateo, Wendy & Villota, Elm, 2020. "Phenols production form Douglas fir catalytic pyrolysis with MgO and biomass-derived activated carbon catalysts," Energy, Elsevier, vol. 199(C).
    9. Zhang, Yayun & Duan, Dengle & Lei, Hanwu & Villota, Elmar & Ruan, Roger, 2019. "Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    11. Lin, Xiaona & Lei, Hanwu & Wang, Chenxi & Qian, Moriko & Mateo, Wendy & Chen, Xiaoyun & Guo, Yadong & Huo, Erguang, 2023. "The effects of pore structures and functional groups on the catalytic performance of activated carbon catalysts for the co-pyrolysis of biomass and plastic into aromatics and hydrogen-rich syngas," Renewable Energy, Elsevier, vol. 202(C), pages 855-864.
    12. Park, Ki-Bum & Jeong, Yong-Seong & Guzelciftci, Begum & Kim, Joo-Sik, 2020. "Two-stage pyrolysis of polystyrene: Pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes," Applied Energy, Elsevier, vol. 259(C).
    13. Zhang, Donghong & Lin, Xiaona & Zhang, Qingfa & Ren, Xiajin & Yu, Wenfan & Cai, Hongzhen, 2020. "Catalytic pyrolysis of wood-plastic composite waste over activated carbon catalyst for aromatics production: Effect of preparation process of activated carbon," Energy, Elsevier, vol. 212(C).
    14. Palizdar, A. & Sadrameli, S.M., 2020. "Catalytic upgrading of biomass pyrolysis oil over tailored hierarchical MFI zeolite: Effect of porosity enhancement and porosity-acidity interaction on deoxygenation reactions," Renewable Energy, Elsevier, vol. 148(C), pages 674-688.
    15. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    16. Kaczor, Zuzanna & Buliński, Zbigniew & Werle, Sebastian, 2020. "Modelling approaches to waste biomass pyrolysis: a review," Renewable Energy, Elsevier, vol. 159(C), pages 427-443.
    17. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    18. Chhabra, Vibhuti & Bambery, Keith & Bhattacharya, Sankar & Shastri, Yogendra, 2020. "Thermal and in situ infrared analysis to characterise the slow pyrolysis of mixed municipal solid waste (MSW) and its components," Renewable Energy, Elsevier, vol. 148(C), pages 388-401.
    19. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    20. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.