IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v232y2021ics0360544221013384.html
   My bibliography  Save this article

Improving bio-oil quality from low-density polyethylene pyrolysis: Effects of varying activation and pyrolysis parameters

Author

Listed:
  • Duan, Dengle
  • Feng, Zhiqiang
  • Dong, Xiaoyong
  • Chen, Xiaoru
  • Zhang, Yayun
  • Wan, Kun
  • Wang, Yunpu
  • Wang, Qin
  • Xiao, Gengsheng
  • Liu, Huifan
  • Ruan, Roger

Abstract

Activated carbons have recently emerged as renewable and efficient catalysts in converting low-density polyethylene (LDPE) into valuable chemical and fuels, while the effects of various structure characters and operating conditions on the catalytic reactions of LDPE have not been well interpreted. Here, the renewable Chestnut shell is used to produce catalyst (CNSACC), then applied in catalytic pyrolysis process for the first time to conclude fatidic perception in the optimal process in improving jet fuel range aromatics and H2-enriched fuel gas. Activating reagent concentration and carbonization temperature play critical roles in the specific surface area and acidity, having optima conditions in obtaining target chemicals due to unique inherent structure of parent CNS. The catalytic temperature and catalyst loading also give rise to different catalytic performance. The results showed that the main compositions of attained bio-oil are belonged to jet fuel range hydrocarbons (up to 100%). The optimal selectivity of aromatics (95.88%) with a high content of H2 (65.37 vol%) could be achieved at a H3PO4/CNS ratio of 0.8, carbonization temperature of 850 °C, catalytic temperature of 550 °C and CNSACC/LDPE ratio of 1.0. This may provide fresh insight into fabricating catalyst from biomass, and give suggestions to upgradation of pyrolysis products.

Suggested Citation

  • Duan, Dengle & Feng, Zhiqiang & Dong, Xiaoyong & Chen, Xiaoru & Zhang, Yayun & Wan, Kun & Wang, Yunpu & Wang, Qin & Xiao, Gengsheng & Liu, Huifan & Ruan, Roger, 2021. "Improving bio-oil quality from low-density polyethylene pyrolysis: Effects of varying activation and pyrolysis parameters," Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221013384
    DOI: 10.1016/j.energy.2021.121090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221013384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Zixu & Lei, Hanwu & Zhang, Yayun & Qian, Kezhen & Villota, Elmar & Qian, Moriko & Yadavalli, Gayatri & Sun, Hua, 2018. "Production of renewable alkyl-phenols from catalytic pyrolysis of Douglas fir sawdust over biomass-derived activated carbons," Applied Energy, Elsevier, vol. 220(C), pages 426-436.
    2. Lopez, Gartzen & Artetxe, Maite & Amutio, Maider & Bilbao, Javier & Olazar, Martin, 2017. "Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 346-368.
    3. Sebestyén, Z. & Barta-Rajnai, E. & Bozi, J. & Blazsó, M. & Jakab, E. & Miskolczi, N. & Sója, J. & Czégény, Zs., 2017. "Thermo-catalytic pyrolysis of biomass and plastic mixtures using HZSM-5," Applied Energy, Elsevier, vol. 207(C), pages 114-122.
    4. Duan, Dengle & Zhang, Yayun & Wang, Yunpu & Lei, Hanwu & Wang, Qin & Ruan, Roger, 2020. "Production of renewable jet fuel and gasoline range hydrocarbons from catalytic pyrolysis of soapstock over corn cob-derived activated carbons," Energy, Elsevier, vol. 209(C).
    5. Zhang, Donghong & Lin, Xiaona & Zhang, Qingfa & Ren, Xiajin & Yu, Wenfan & Cai, Hongzhen, 2020. "Catalytic pyrolysis of wood-plastic composite waste over activated carbon catalyst for aromatics production: Effect of preparation process of activated carbon," Energy, Elsevier, vol. 212(C).
    6. Zhang, Yayun & Duan, Dengle & Lei, Hanwu & Villota, Elmar & Ruan, Roger, 2019. "Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Ruming & Martins, Marcio Ferreira & Debenest, Gérald, 2022. "Optimization of oil production through ex-situ catalytic pyrolysis of waste polyethylene with activated carbon," Energy, Elsevier, vol. 248(C).
    2. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.
    3. Bartłomiej Igliński & Wojciech Kujawski & Urszula Kiełkowska, 2023. "Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development—A Review," Energies, MDPI, vol. 16(4), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Zhang, Donghong & Lin, Xiaona & Zhang, Qingfa & Ren, Xiajin & Yu, Wenfan & Cai, Hongzhen, 2020. "Catalytic pyrolysis of wood-plastic composite waste over activated carbon catalyst for aromatics production: Effect of preparation process of activated carbon," Energy, Elsevier, vol. 212(C).
    3. Duan, Dengle & Zhang, Yayun & Wang, Yunpu & Lei, Hanwu & Wang, Qin & Ruan, Roger, 2020. "Production of renewable jet fuel and gasoline range hydrocarbons from catalytic pyrolysis of soapstock over corn cob-derived activated carbons," Energy, Elsevier, vol. 209(C).
    4. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Chen, Wei & Fang, Yang & Li, Kaixu & Chen, Zhiqun & Xia, Mingwei & Gong, Meng & Chen, Yingquan & Yang, Haiping & Tu, Xin & Chen, Hanping, 2020. "Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products," Applied Energy, Elsevier, vol. 260(C).
    6. Huo, Erguang & Duan, Dengle & Lei, Hanwu & Liu, Chao & Zhang, Yayun & Wu, Jie & Zhao, Yunfeng & Huang, Zhiyang & Qian, Moriko & Zhang, Qingfa & Lin, Xiaona & Wang, Chenxi & Mateo, Wendy & Villota, Elm, 2020. "Phenols production form Douglas fir catalytic pyrolysis with MgO and biomass-derived activated carbon catalysts," Energy, Elsevier, vol. 199(C).
    7. Pan, Ruming & Martins, Marcio Ferreira & Debenest, Gérald, 2022. "Optimization of oil production through ex-situ catalytic pyrolysis of waste polyethylene with activated carbon," Energy, Elsevier, vol. 248(C).
    8. Zhao, Xiang & You, Fengqi, 2021. "Waste respirator processing system for public health protection and climate change mitigation under COVID-19 pandemic: Novel process design and energy, environmental, and techno-economic perspectives," Applied Energy, Elsevier, vol. 283(C).
    9. Kan, Tao & Strezov, Vladimir & Evans, Tim & He, Jing & Kumar, Ravinder & Lu, Qiang, 2020. "Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Yao, Dingding & Wang, Chi-Hwa, 2020. "Pyrolysis and in-line catalytic decomposition of polypropylene to carbon nanomaterials and hydrogen over Fe- and Ni-based catalysts," Applied Energy, Elsevier, vol. 265(C).
    11. Zhang, Yayun & Duan, Dengle & Lei, Hanwu & Villota, Elmar & Ruan, Roger, 2019. "Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Lin, Xiaona & Lei, Hanwu & Wang, Chenxi & Qian, Moriko & Mateo, Wendy & Chen, Xiaoyun & Guo, Yadong & Huo, Erguang, 2023. "The effects of pore structures and functional groups on the catalytic performance of activated carbon catalysts for the co-pyrolysis of biomass and plastic into aromatics and hydrogen-rich syngas," Renewable Energy, Elsevier, vol. 202(C), pages 855-864.
    13. Park, Ki-Bum & Jeong, Yong-Seong & Guzelciftci, Begum & Kim, Joo-Sik, 2020. "Two-stage pyrolysis of polystyrene: Pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes," Applied Energy, Elsevier, vol. 259(C).
    14. Sophonrat, Nanta & Sandström, Linda & Zaini, Ilman Nuran & Yang, Weihong, 2018. "Stepwise pyrolysis of mixed plastics and paper for separation of oxygenated and hydrocarbon condensates," Applied Energy, Elsevier, vol. 229(C), pages 314-325.
    15. Chhabra, Vibhuti & Bambery, Keith & Bhattacharya, Sankar & Shastri, Yogendra, 2020. "Thermal and in situ infrared analysis to characterise the slow pyrolysis of mixed municipal solid waste (MSW) and its components," Renewable Energy, Elsevier, vol. 148(C), pages 388-401.
    16. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    17. Yuanjia Zhang & Xueru Chen & Leilei Cheng & Jing Gu & Yulin Xu, 2023. "Conversion of Polyethylene to High-Yield Fuel Oil at Low Temperatures and Atmospheric Initial Pressure," IJERPH, MDPI, vol. 20(5), pages 1-14, February.
    18. Danfeng Zhang & Xin Wang & Liang Zhao & Huaqing Xie & Chen Guo & Feizhou Qian & Hui Dong & Yun Hu, 2023. "Numerical Investigation on Heat Transfer and Flow Resistance Characteristics of Superheater in Hydrocracking Heat Recovery Steam Generator," Energies, MDPI, vol. 16(17), pages 1-15, August.
    19. Lin, Xiaona & Kong, Lingshuai & Ren, Xiajin & Zhang, Donghong & Cai, Hongzhen & Lei, Hanwu, 2021. "Catalytic co-pyrolysis of torrefied poplar wood and high-density polyethylene over hierarchical HZSM-5 for mono-aromatics production," Renewable Energy, Elsevier, vol. 164(C), pages 87-95.
    20. Salvilla, John Nikko V. & Ofrasio, Bjorn Ivan G. & Rollon, Analiza P. & Manegdeg, Ferdinand G. & Abarca, Ralf Ruffel M. & de Luna, Mark Daniel G., 2020. "Synergistic co-pyrolysıs of polyolefin plastics with wood and agricultural wastes for biofuel production," Applied Energy, Elsevier, vol. 279(C).

    More about this item

    Keywords

    Ex-situ system; LDPE; CNSACC; Aromatic; H2;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:232:y:2021:i:c:s0360544221013384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.