IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v206y2020ics0360544220310999.html
   My bibliography  Save this article

Modeling the determinants of renewable energy consumption: Evidence from the five most populous nations in Africa

Author

Listed:
  • Akintande, Olalekan J.
  • Olubusoye, Olusanya E.
  • Adenikinju, Adeola F.
  • Olanrewaju, Busayo T.

Abstract

The increasing concern over global warming and energy security has rejuvenated the renewable energy option as the most vibrant option to sustaining future energy needs. This paper developed a renewable energy consumption model using annual data spanning between 1996 and 2016 in the five most populous countries (Ethiopia, South Africa, Nigeria, DR Congo, and Egypt) in Africa. Following the existing literature on the subject, the driving factors investigated were categorized into three broad areas. These include macroeconomic, socioeconomic, and institutional variables. Altogether, thirty-four predictor variables are analyzed. The study employed Bayesian Model Averaging (BMA) procedures to account for the uncertainty associated model choice and variable selection. The results of the analysis indicate that population growth, urban population, energy use, electric power consumption, human capital are the main determinants of renewable energy consumption in the selected countries. Also, an increase in any of these determinants (population growth, urban population, energy demand/use, electricity power demand/consumption) causes an increase in renewable energy consumption.

Suggested Citation

  • Akintande, Olalekan J. & Olubusoye, Olusanya E. & Adenikinju, Adeola F. & Olanrewaju, Busayo T., 2020. "Modeling the determinants of renewable energy consumption: Evidence from the five most populous nations in Africa," Energy, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220310999
    DOI: 10.1016/j.energy.2020.117992
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220310999
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117992?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Ştefan Armeanu & Georgeta Vintilă & Ştefan Cristian Gherghina, 2017. "Empirical Study towards the Drivers of Sustainable Economic Growth in EU-28 Countries," Sustainability, MDPI, vol. 10(1), pages 1-22, December.
    2. Winford H. Masanjala & Chris Papageorgiou, 2008. "Rough and lonely road to prosperity: a reexamination of the sources of growth in Africa using Bayesian model averaging," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 671-682.
    3. Shuddhasattwa Rafiq & Harry Bloch & Ruhul Salim, 2014. "Determinants of renewable energy adoption in China and India: a comparative analysis," Applied Economics, Taylor & Francis Journals, vol. 46(22), pages 2700-2710, August.
    4. Giuseppe De Luca & Jan R. Magnus, 2011. "Bayesian model averaging and weighted-average least squares: Equivariance, stability, and numerical issues," Stata Journal, StataCorp LP, vol. 11(4), pages 518-544, December.
    5. Olav H. Hohmeyer & Sönke Bohm, 2015. "Trends toward 100% renewable electricity supply in Germany and Europe: a paradigm shift in energy policies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(1), pages 74-97, January.
    6. Sebri, Maamar, 2015. "Use renewables to be cleaner: Meta-analysis of the renewable energy consumption–economic growth nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 657-665.
    7. Aguirre, Mariana & Ibikunle, Gbenga, 2014. "Determinants of renewable energy growth: A global sample analysis," Energy Policy, Elsevier, vol. 69(C), pages 374-384.
    8. Dogan, Eyup & Seker, Fahri, 2016. "The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1074-1085.
    9. Apergis, Nicholas & Ben Jebli, Mehdi & Ben Youssef, Slim, 2018. "Does renewable energy consumption and health expenditures decrease carbon dioxide emissions? Evidence for sub-Saharan Africa countries," Renewable Energy, Elsevier, vol. 127(C), pages 1011-1016.
    10. Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
    11. G. S. Sisodia & I. Soares, 2015. "Panel data analysis for renewable energy investment determinants in Europe," Applied Economics Letters, Taylor & Francis Journals, vol. 22(5), pages 397-401, March.
    12. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    13. Olanrewaju, Busayo T. & Olubusoye, Olusanya E. & Adenikinju, Adeola & Akintande, Olalekan J., 2019. "A panel data analysis of renewable energy consumption in Africa," Renewable Energy, Elsevier, vol. 140(C), pages 668-679.
    14. Omri, Anis & Nguyen, Duc Khuong, 2014. "On the determinants of renewable energy consumption: International evidence," Energy, Elsevier, vol. 72(C), pages 554-560.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amine Lahiani & Sinha Avik & Muhammad Shahbaz, 2018. "Renewable energy consumption, income, CO2 emissions and oil prices in G7 countries: The importance of asymmetries," Post-Print hal-03677233, HAL.
    2. Lin, Boqiang & Omoju, Oluwasola E., 2017. "Focusing on the right targets: Economic factors driving non-hydro renewable energy transition," Renewable Energy, Elsevier, vol. 113(C), pages 52-63.
    3. Atif Maqbool Khan & Jacek Kwiatkowski & Magdalena Osińska & Marcin Błażejowski, 2021. "Factors of Renewable Energy Consumption in the European Countries—The Bayesian Averaging Classical Estimates Approach," Energies, MDPI, vol. 14(22), pages 1-24, November.
    4. Jeetoo, Jamiil, 2022. "Spatial interaction effect in renewable energy consumption in sub-Saharan Africa," Renewable Energy, Elsevier, vol. 190(C), pages 148-155.
    5. Wu-Shun Tee & Lee Chin & Abdul Samad Abdul-Rahim, 2021. "Determinants of Renewable Energy Production: Do Intellectual Property Rights Matter?," Energies, MDPI, vol. 14(18), pages 1-15, September.
    6. Karaaslan, Abdulkerim & Çamkaya, Serhat, 2022. "The relationship between CO2 emissions, economic growth, health expenditure, and renewable and non-renewable energy consumption: Empirical evidence from Turkey," Renewable Energy, Elsevier, vol. 190(C), pages 457-466.
    7. Fotio, Herve Kaffo & Nchofoung, Tii N. & Asongu, Simplice A., 2022. "Financing renewable energy generation in SSA: Does financial integration matter?," Renewable Energy, Elsevier, vol. 201(P2), pages 47-59.
    8. Ibrahiem, Dalia M. & Hanafy, Shaimaa A., 2021. "Do energy security and environmental quality contribute to renewable energy? The role of trade openness and energy use in North African countries," Renewable Energy, Elsevier, vol. 179(C), pages 667-678.
    9. Borozan, Dj, 2022. "Asymmetric effects of policy uncertainty on renewable energy consumption in G7 countries," Renewable Energy, Elsevier, vol. 189(C), pages 412-420.
    10. Lin, Boqiang & Omoju, Oluwasola E. & Okonkwo, Jennifer U., 2016. "Factors influencing renewable electricity consumption in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 687-696.
    11. Somoye, Oluwatoyin Abidemi & Ozdeser, Huseyin & Seraj, Mehdi, 2022. "Modeling the determinants of renewable energy consumption in Nigeria: Evidence from Autoregressive Distributed Lagged in error correction approach," Renewable Energy, Elsevier, vol. 190(C), pages 606-616.
    12. Dogan, Eyup & Chishti, Muhammad Zubair & Karimi Alavijeh, Nooshin & Tzeremes, Panayiotis, 2022. "The roles of technology and Kyoto Protocol in energy transition towards COP26 targets: Evidence from the novel GMM-PVAR approach for G-7 countries," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    13. Tii N. Nchofoung & Hervé Kaffo Fotio & Clovis Wendji Miamo, 2023. "Green taxation and renewable energy technologies adoption: A global evidence," Working Papers 23/007, European Xtramile Centre of African Studies (EXCAS).
    14. Yeboah Asuamah, Samuel, 2015. "Government activities and fossil fuel consumption in Ghana," MPRA Paper 89549, University Library of Munich, Germany, revised 15 Aug 2018.
    15. Baye, Richmond Silvanus & Ahenkan, Albert & Darkwah, Samuel, 2021. "Renewable energy output in sub Saharan Africa," Renewable Energy, Elsevier, vol. 174(C), pages 705-714.
    16. Farzan Yahya & Muhammad Rafiq, 2020. "Brownfield, greenfield, and renewable energy consumption: Moderating role of effective governance," Energy & Environment, , vol. 31(3), pages 405-423, May.
    17. Amuakwa-Mensah, Franklin & Näsström, Elin, 2022. "Role of banking sector performance in renewable energy consumption," Applied Energy, Elsevier, vol. 306(PB).
    18. Kassouri, Yacouba & Altuntaş, Mehmet & Alola, Andrew Adewale, 2022. "The contributory capacity of natural capital to energy transition in the European Union," Renewable Energy, Elsevier, vol. 190(C), pages 617-629.
    19. Arbolino, Roberta & Boffardi, Raffaele & Ioppolo, Giuseppe, 2019. "The effectiveness of European energy policy on the Italian system: Regional evidences from a hierarchical cluster analysis approach," Energy Policy, Elsevier, vol. 132(C), pages 47-61.
    20. Demir, Caner & Cergibozan, Raif, 2020. "Does alternative energy usage converge across Oecd countries?," Renewable Energy, Elsevier, vol. 146(C), pages 559-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:206:y:2020:i:c:s0360544220310999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.