IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v201y2020ics0360544220307490.html
   My bibliography  Save this article

Thermal performance prediction of the battery surface via dynamic mode decomposition

Author

Listed:
  • Kanbur, Baris Burak
  • Kumtepeli, Volkan
  • Duan, Fei

Abstract

The heat dissipation from the battery surface significantly affects battery performance and lifetime. This study proposes a new and an alternative method to predict the thermal performance of the battery operation according to the surface temperature gradients and heat & exergy losses by using a data-driven dynamic mode decomposition method, which is new for thermal flows. To predict the thermal gradients, a 10 min long experiment is performed via an infrared thermographic camera for a commercial Li-polymer battery of a smartphone. The camera collects the thermal images on the battery surface along 1 min as the data training period at first; then, the proposed method predicts the surface temperature gradients for the rest of the experimental period, 5 min. The temperature gradients on the battery surface are well predicted with less than 1% error whereas the heat dissipation and the exergy loss are predicted with the maximum error values of 2.75% and 5.30%, respectively. According to the error probability distribution plots, the vast majority of the occurred error is less than ±5%. The results prove the fast prediction ability of the proposed technique and show promising outcomes for further improvement studies.

Suggested Citation

  • Kanbur, Baris Burak & Kumtepeli, Volkan & Duan, Fei, 2020. "Thermal performance prediction of the battery surface via dynamic mode decomposition," Energy, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220307490
    DOI: 10.1016/j.energy.2020.117642
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220307490
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117642?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of gas-liquid flow in a rotodynamic multiphase pump," Renewable Energy, Elsevier, vol. 139(C), pages 1159-1175.
    2. Liu, Ming & Tan, Lei & Cao, Shuliang, 2019. "Dynamic mode decomposition of cavitating flow around ALE 15 hydrofoil," Renewable Energy, Elsevier, vol. 139(C), pages 214-227.
    3. Holger C. Hesse & Volkan Kumtepeli & Michael Schimpe & Jorn Reniers & David A. Howey & Anshuman Tripathi & Youyi Wang & Andreas Jossen, 2019. "Ageing and Efficiency Aware Battery Dispatch for Arbitrage Markets Using Mixed Integer Linear Programming †," Energies, MDPI, vol. 12(6), pages 1-28, March.
    4. Steven L. Brunton & Bingni W. Brunton & Joshua L. Proctor & Eurika Kaiser & J. Nathan Kutz, 2017. "Chaos as an intermittently forced linear system," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
    5. Zhao, Rui & Gu, Junjie & Liu, Jie, 2017. "Optimization of a phase change material based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design," Energy, Elsevier, vol. 135(C), pages 811-822.
    6. Jiang, Le & Zhang, Hengyun & Li, Junwei & Xia, Peng, 2019. "Thermal performance of a cylindrical battery module impregnated with PCM composite based on thermoelectric cooling," Energy, Elsevier, vol. 188(C).
    7. Bai, Fanfei & Chen, Mingbiao & Song, Wenji & Yu, Qinghua & Li, Yongliang & Feng, Ziping & Ding, Yulong, 2019. "Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate," Energy, Elsevier, vol. 167(C), pages 561-574.
    8. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    9. Chen, Kai & Wu, Weixiong & Yuan, Fang & Chen, Lin & Wang, Shuangfeng, 2019. "Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow pattern," Energy, Elsevier, vol. 167(C), pages 781-790.
    10. Jaiswal, Abhishek, 2017. "Lithium-ion battery based renewable energy solution for off-grid electricity: A techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 922-934.
    11. Opitz, A. & Badami, P. & Shen, L. & Vignarooban, K. & Kannan, A.M., 2017. "Can Li-Ion batteries be the panacea for automotive applications?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 685-692.
    12. Zhang, Feitie & Yang, Fuyuan & Xue, Dianlun & Cai, Yuanchun, 2019. "Optimization of compound power split configurations in PHEV bus for fuel consumption and battery degradation decreasing," Energy, Elsevier, vol. 169(C), pages 937-957.
    13. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    14. Al-Zareer, Maan & Dincer, Ibrahim & Rosen, Marc A., 2019. "Comparative assessment of new liquid-to-vapor type battery cooling systems," Energy, Elsevier, vol. 188(C).
    15. Chen, Lin & Lin, Weilong & Li, Junzi & Tian, Binbin & Pan, Haihong, 2016. "Prediction of lithium-ion battery capacity with metabolic grey model," Energy, Elsevier, vol. 106(C), pages 662-672.
    16. Cai, Y. & Yang, F. & Ouyang, MG., 2016. "Impact of control strategy on battery degradation for a plug-in hybrid electric city bus in China," Energy, Elsevier, vol. 116(P1), pages 1020-1030.
    17. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Liu, Yonggang & Zhang, Yuanjian, 2023. "Multi-step ahead voltage prediction and voltage fault diagnosis based on gated recurrent unit neural network and incremental training," Energy, Elsevier, vol. 266(C).
    2. Mohammad Faisal Khan & Asif Pervez & Umar Muhammad Modibbo & Jahangir Chauhan & Irfan Ali, 2021. "Flexible Fuzzy Goal Programming Approach in Optimal Mix of Power Generation for Socio-Economic Sustainability: A Case Study," Sustainability, MDPI, vol. 13(15), pages 1-27, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).
    2. Markus S. Wahl & Lena Spitthoff & Harald I. Muri & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "The Importance of Optical Fibres for Internal Temperature Sensing in Lithium-ion Batteries during Operation," Energies, MDPI, vol. 14(12), pages 1-17, June.
    3. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Elsewify, O. & Souri, M. & Esfahani, M.N. & Hosseinzadeh, E. & Jabbari, M., 2021. "A new method for internal cooling of a large format lithium-ion battery pouch cell," Energy, Elsevier, vol. 225(C).
    5. Zhou, Zhizuan & Wang, Dong & Peng, Yang & Li, Maoyu & Wang, Boxuan & Cao, Bei & Yang, Lizhong, 2022. "Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery," Energy, Elsevier, vol. 238(PC).
    6. Nguyen, T.D. & Deng, J. & Robert, B. & Chen, W. & Siegmund, T., 2022. "Experimental investigation on cooling of prismatic battery cells through cell integrated features," Energy, Elsevier, vol. 244(PA).
    7. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Liu, Ming & Tan, Lei & Cao, Shuliang, 2020. "Method of dynamic mode decomposition and reconstruction with application to a three-stage multiphase pump," Energy, Elsevier, vol. 208(C).
    9. Murali, G. & Sravya, G.S.N. & Jaya, J. & Naga Vamsi, V., 2021. "A review on hybrid thermal management of battery packs and it's cooling performance by enhanced PCM," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Qaderi, Alireza & Veysi, Farzad, 2022. "Investigation of a water-NEPCM cooling thermal management system for cylindrical 18650 Li-ion batteries," Energy, Elsevier, vol. 244(PA).
    11. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Wang, Cong & Zhang, Yongxue & Yuan, Zhiyi & Ji, Kaizhuo, 2020. "Development and application of the entropy production diagnostic model to the cavitation flow of a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 154(C), pages 774-785.
    13. Raijmakers, L.H.J. & Danilov, D.L. & Eichel, R.-A. & Notten, P.H.L., 2019. "A review on various temperature-indication methods for Li-ion batteries," Applied Energy, Elsevier, vol. 240(C), pages 918-945.
    14. Zubi, Ghassan & Fracastoro, Gian Vincenzo & Lujano-Rojas, Juan M. & El Bakari, Khalil & Andrews, David, 2019. "The unlocked potential of solar home systems; an effective way to overcome domestic energy poverty in developing regions," Renewable Energy, Elsevier, vol. 132(C), pages 1425-1435.
    15. Guo, Chao & Liu, Huan-ling & Guo, Qi & Shao, Xiao-dong & Zhu, Ming-liang, 2022. "Investigations on a novel cold plate achieved by topology optimization for lithium-ion batteries," Energy, Elsevier, vol. 261(PA).
    16. Shen, Zu-Guo & Chen, Shuai & Liu, Xun & Chen, Ben, 2021. "A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. Han, Yadong & Tan, Lei, 2020. "Dynamic mode decomposition and reconstruction of tip leakage vortex in a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 155(C), pages 725-734.
    18. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    19. Liu, Huan-ling & Shi, Hang-bo & Shen, Han & Xie, Gongnan, 2019. "The performance management of a Li-ion battery by using tree-like mini-channel heat sinks: Experimental and numerical optimization," Energy, Elsevier, vol. 189(C).
    20. Guo, Zengjia & Xu, Qidong & Wang, Yang & Zhao, Tianshou & Ni, Meng, 2023. "Battery thermal management system with heat pipe considering battery aging effect," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:201:y:2020:i:c:s0360544220307490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.