IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v192y2020ics0360544219322856.html
   My bibliography  Save this article

Effect of cracked naphtha/biodiesel/diesel blends on performance, combustion and emissions characteristics of compression ignition engine

Author

Listed:
  • Ashour, Mahmoud K.
  • Eldrainy, Yehia A.
  • Elwardany, Ahmed E.

Abstract

Utilization of biofuels has drawn attention of researchers for many years to face depletion of fossil fuels. The high viscosity and low heating value of biodiesel are main drawbacks of using it along with high NOx emissions. Addition of ternary component to relax these drawbacks are widely considered. The focus of this study is to illustrate the effect of a novel ternary component to diesel-biodiesel blend on combustion characteristics, engine performance and emissions. This third component is cracked naphtha which is a low cetane/low octane fuel. Engine experiments were performed using a single cylinder, 4-stroke, air-cooled compression ignition (CI) engine. Different naphtha concentrations were considered. This included 5%, 10% and 15%. The engine performance results revealed that 10% and 5% are the maximum allowable percentages of naphtha to D100 and B30, respectively. A reduction in brake specific fuel consumption (bsfc) of 6.28% and 11.7% was achieved for 5% and 10% naphtha addition to diesel, respectively. Negligible effect was observed for naphtha on bsfc for B30–N5. Naphtha has decreased NOx emissions for B30–N5 at all considered loads and for diesel-naphtha blends at high and medium loads. CO emissions have been reduced for diesel-naphtha blends, while for B30–N5, CO emissions was increased.

Suggested Citation

  • Ashour, Mahmoud K. & Eldrainy, Yehia A. & Elwardany, Ahmed E., 2020. "Effect of cracked naphtha/biodiesel/diesel blends on performance, combustion and emissions characteristics of compression ignition engine," Energy, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219322856
    DOI: 10.1016/j.energy.2019.116590
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219322856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Xinwei & Ng, Hoon Kiat & Gan, Suyin & Ho, Jee Hou & Pang, Kar Mun, 2016. "Sensitivity analyses of biodiesel thermo-physical properties under diesel engine conditions," Energy, Elsevier, vol. 109(C), pages 341-352.
    2. Babu, D. & Anand, R., 2017. "Effect of biodiesel-diesel-n-pentanol and biodiesel-diesel-n-hexanol blends on diesel engine emission and combustion characteristics," Energy, Elsevier, vol. 133(C), pages 761-776.
    3. Wang, Libing & Wu, Zengyang & Ahmed, Ahfaz & Badra, Jihad A. & Sarathy, S. Mani & Roberts, William L. & Fang, Tiegang, 2019. "Auto-ignition of direct injection spray of light naphtha, primary reference fuels, gasoline and gasoline surrogate," Energy, Elsevier, vol. 170(C), pages 375-390.
    4. Pradelle, Florian & Leal Braga, Sergio & Fonseca de Aguiar Martins, Ana Rosa & Turkovics, Franck & Nohra Chaar Pradelle, Renata, 2019. "Performance and combustion characteristics of a compression ignition engine running on diesel-biodiesel-ethanol (DBE) blends – Potential as diesel fuel substitute on an Euro III engine," Renewable Energy, Elsevier, vol. 136(C), pages 586-598.
    5. Ghadikolaei, Meisam Ahmadi & Cheung, Chun Shun & Yung, Ka-Fu, 2018. "Study of combustion, performance and emissions of diesel engine fueled with diesel/biodiesel/alcohol blends having the same oxygen concentration," Energy, Elsevier, vol. 157(C), pages 258-269.
    6. Hawi, Meshack & Elwardany, Ahmed & Ookawara, Shinichi & Ahmed, Mahmoud, 2019. "Effect of compression ratio on performance, combustion and emissions characteristics of compression ignition engine fueled with jojoba methyl ester," Renewable Energy, Elsevier, vol. 141(C), pages 632-645.
    7. Meshack Hawi & Ahmed Elwardany & Mohamed Ismail & Mahmoud Ahmed, 2019. "Experimental Investigation on Performance of a Compression Ignition Engine Fueled with Waste Cooking Oil Biodiesel–Diesel Blend Enhanced with Iron-Doped Cerium Oxide Nanoparticles," Energies, MDPI, vol. 12(5), pages 1-18, February.
    8. EL-Seesy, Ahmed I. & Hassan, Hamdy, 2019. "Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance," Renewable Energy, Elsevier, vol. 132(C), pages 558-574.
    9. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    10. Asokan, M.A. & Senthur Prabu, S. & Bade, Pushpa Kiran Kumar & Nekkanti, Venkata Mukesh & Gutta, Sri Sai Gopal, 2019. "Performance, combustion and emission characteristics of juliflora biodiesel fuelled DI diesel engine," Energy, Elsevier, vol. 173(C), pages 883-892.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de la Garza, Oscar A. & Martínez-Martínez, S. & Avulapati, Madan Mohan & Pos, Radboud & Megaritis, Thanos & Ganippa, Lionel, 2021. "Biofuels and its spray interactions under pilot-main injection strategy," Energy, Elsevier, vol. 219(C).
    2. Almanzalawy, M.S. & Elkady, M.F. & Mori, S. & Elwardany, A.E., 2023. "Quantification of soot nanostructure produced from a diesel engine fueled with C3 ketone," Energy, Elsevier, vol. 278(C).
    3. Naderi, Alireza & Qasemian, Ali & Shojaeefard, Mohammad Hasan & Samiezadeh, Saman & Younesi, Mostafa & Sohani, Ali & Hoseinzadeh, Siamak, 2021. "A smart load-speed sensitive cooling map to have a high- performance thermal management system in an internal combustion engine," Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thakkar, Kartikkumar & Kachhwaha, Surendra Singh & Kodgire, Pravin & Srinivasan, Seshasai, 2021. "Combustion investigation of ternary blend mixture of biodiesel/n-butanol/diesel: CI engine performance and emission control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    3. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    4. Rai, Ranjeet Kumar & Sahoo, Rashmi Rekha, 2019. "Effective power and effective power density analysis for water in diesel emulsion as fuel in diesel engine performance," Energy, Elsevier, vol. 180(C), pages 893-902.
    5. Kukana, Rajendra & Jakhar, Om Prakash, 2022. "Effect of ternary blends diesel/n-propanol/composite biodiesel on diesel engine operating parameters," Energy, Elsevier, vol. 260(C).
    6. Nadir Yilmaz & Alpaslan Atmanli & Matthew J. Hall & Francisco M. Vigil, 2022. "Determination of the Optimum Blend Ratio of Diesel, Waste Oil Derived Biodiesel and 1-Pentanol Using the Response Surface Method," Energies, MDPI, vol. 15(14), pages 1-16, July.
    7. Mohanraj Jayapal & Kannan G Radhakrishnan, 2022. "A comparative assessment on the effect of 1-propanol and 1-hexanol as oxygenated additive with diesel/biodiesel blends on single cylinder diesel engine characteristics," Energy & Environment, , vol. 33(1), pages 85-106, February.
    8. EL-Seesy, Ahmed I. & Kayatas, Zafer & Hawi, Meshack & Kosaka, Hidenori & He, Zhixia, 2020. "Combustion and emission characteristics of a rapid compression-expansion machine operated with N-heptanol-methyl oleate biodiesel blends," Renewable Energy, Elsevier, vol. 147(P1), pages 2064-2076.
    9. Rajak, Upendra & Nashine, Prerana & Verma, Tikendra Nath, 2019. "Characteristics of microalgae spirulina biodiesel with the impact of n-butanol addition on a CI engine," Energy, Elsevier, vol. 189(C).
    10. Thomas, Justin Jacob & Nagarajan, G. & Sabu, V.R. & Manojkumar, C.V. & Sharma, Vikas, 2022. "Performance and emissions of hexanol-biodiesel fuelled RCCI engine with double injection strategies," Energy, Elsevier, vol. 253(C).
    11. Mukhtar, M.N.A. & Hagos, Ftwi Y. & Noor, M.M. & Mamat, Rizalman & Abdullah, A. Adam & Abd Aziz, Abd Rashid, 2019. "Tri-fuel emulsion with secondary atomization attributes for greener diesel engine – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 490-506.
    12. Mohammed Kamil & Fatima M. Almarashda, 2023. "Economic Viability and Engine Performance Evaluation of Biodiesel Derived from Desert Palm Date Seeds," Energies, MDPI, vol. 16(3), pages 1-22, February.
    13. Das, Amar Kumar & Hansdah, Dulari & Panda, Achyut Kumar, 2021. "Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives," Energy, Elsevier, vol. 229(C).
    14. Babu, D. & Karvembu, R. & Anand, R., 2018. "Impact of split injection strategy on combustion, performance and emissions characteristics of biodiesel fuelled common rail direct injection assisted diesel engine," Energy, Elsevier, vol. 165(PB), pages 577-592.
    15. Kim, Hyung Jun & Jo, Seongin & Lee, Jong-Tae & Park, Suhan, 2020. "Biodiesel fueled combustion performance and emission characteristics under various intake air temperature and injection timing conditions," Energy, Elsevier, vol. 206(C).
    16. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    17. Upendra Rajak & Abhishek Dasore & Prem Kumar Chaurasiya & Tikendra Nath Verma & Prerana Nashine & Anil Kumar, 2023. "Effects of microalgae -ethanol-methanol-diesel blends on the spray characteristics and emissions of a diesel engine," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 1-22, January.
    18. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    19. Shi, Lei & Ji, Changwei & Wang, Shuofeng & Su, Teng & Cong, Xiaoyu & Wang, Du & Tang, Chuanqi, 2019. "Effects of second injection timing on combustion characteristics of the spark ignition direct injection gasoline engines with dimethyl ether enrichment in the intake port," Energy, Elsevier, vol. 180(C), pages 10-18.
    20. Oni, Babalola Aisosa & Sanni, Samuel Eshorame & Orodu, David Oyinkepreye & Ogunkunle, Temitope Fred, 2022. "Comparing the effects of Juliflora biodiesel doped with nano-additives on the performance of a compression ignition (CI) engine: Part A," Energy, Elsevier, vol. 244(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:192:y:2020:i:c:s0360544219322856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.