IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v187y2019ics0360544219316603.html
   My bibliography  Save this article

Multi-objective NSGA-II optimization of a compression ignition engine parameters using biodiesel fuel and exhaust gas recirculation

Author

Listed:
  • Jaliliantabar, Farzad
  • Ghobadian, Barat
  • Najafi, Gholamhassan
  • Mamat, Rizalman
  • Carlucci, Antonio Paolo

Abstract

In this study an exhaust gas recirculation system was developed for a small single cylinder 4-stroke engine. Then the mathematical models to correlate responses as the engine emissions and performance characteristics to the factors, include engine load, engine speed, EGR rate and biodiesel fuel percent, were developed. Finally, by using the developed models and NSGA-II (Non-dominated Sorting Genetic Algorithm II) method, the factors were optimized. The highest decrease in NOx emissions while using the biodiesel and EGR is 63.76% with B10 fuel blend (10% biodiesel fuel and 90% diesel fuel blend by volume) and 30% EGR rate. The highest reduction in HC emission levels while using EGR and biodiesel simultaneously, has been 54.05%. The adjusted R2 of the proposed model for the CO, HC, NOx, Power, BSFC and smoke were 0.94, 0.91, 0.88, 0.95, 0.89 and 0.94, respectively. Results of the optimization of the engine factors with NSGA-II method has been satisfactory and the pareto front for different test conditions was proposed. The outcomes of the study revealed that the optimization should be taken into account in the development of the new policy for using of the biofuel in the internal combustion engines.

Suggested Citation

  • Jaliliantabar, Farzad & Ghobadian, Barat & Najafi, Gholamhassan & Mamat, Rizalman & Carlucci, Antonio Paolo, 2019. "Multi-objective NSGA-II optimization of a compression ignition engine parameters using biodiesel fuel and exhaust gas recirculation," Energy, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316603
    DOI: 10.1016/j.energy.2019.115970
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219316603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.115970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ashnani, Mohammad Hossein Mohammadi & Johari, Anwar & Hashim, Haslenda & Hasani, Elham, 2014. "A source of renewable energy in Malaysia, why biodiesel?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 244-257.
    2. Masum, B.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M. & Palash, S.M. & Abedin, M.J., 2013. "Effect of ethanol–gasoline blend on NOx emission in SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 209-222.
    3. Safieddin Ardebili, M. & Ghobadian, B. & Najafi, G. & Chegeni, A., 2011. "Biodiesel production potential from edible oil seeds in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3041-3044, August.
    4. Saleh, H.E., 2009. "Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester," Renewable Energy, Elsevier, vol. 34(10), pages 2178-2186.
    5. Feng, Hongqing & Zheng, Zunqing & Yao, Mingfa & Cheng, Gang & Wang, Meiying & Wang, Xin, 2013. "Effects of exhaust gas recirculation on low temperature combustion using wide distillation range diesel," Energy, Elsevier, vol. 51(C), pages 291-296.
    6. Solaimuthu, C. & Ganesan, V. & Senthilkumar, D. & Ramasamy, K.K., 2015. "Emission reductions studies of a biodiesel engine using EGR and SCR for agriculture operations in developing countries," Applied Energy, Elsevier, vol. 138(C), pages 91-98.
    7. Wan Ghazali, Wan Nor Maawa & Mamat, Rizalman & Masjuki, H.H. & Najafi, Gholamhassan, 2015. "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 585-602.
    8. Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Younesi, Habibollah & Najafpour, Ghasem, 2016. "On the exergetic optimization of continuous photobiological hydrogen production using hybrid ANFIS–NSGA-II (adaptive neuro-fuzzy inference system–non-dominated sorting genetic algorithm-II)," Energy, Elsevier, vol. 96(C), pages 507-520.
    9. Singh, Yashvir & Sharma, Abhishek & Tiwari, Sumit & Singla, Amneesh, 2019. "Optimization of diesel engine performance and emission parameters employing cassia tora methyl esters-response surface methodology approach," Energy, Elsevier, vol. 168(C), pages 909-918.
    10. Atmanli, Alpaslan & Ileri, Erol & Yilmaz, Nadir, 2016. "Optimization of diesel–butanol–vegetable oil blend ratios based on engine operating parameters," Energy, Elsevier, vol. 96(C), pages 569-580.
    11. Zhu, Zhenxia & Zhang, Fujun & Li, Changjiang & Wu, Taotao & Han, Kai & Lv, Jianguo & Li, Yunlong & Xiao, Xuelian, 2015. "Genetic algorithm optimization applied to the fuel supply parameters of diesel engines working at plateau," Applied Energy, Elsevier, vol. 157(C), pages 789-797.
    12. Lattimore, Thomas & Wang, Chongming & Xu, Hongming & Wyszynski, Miroslaw L. & Shuai, Shijin, 2016. "Investigation of EGR Effect on Combustion and PM Emissions in a DISI Engine," Applied Energy, Elsevier, vol. 161(C), pages 256-267.
    13. Verschaeren, Roel & Schaepdryver, Wouter & Serruys, Thomas & Bastiaen, Marc & Vervaeke, Lieven & Verhelst, Sebastian, 2014. "Experimental study of NOx reduction on a medium speed heavy duty diesel engine by the application of EGR (exhaust gas recirculation) and Miller timing," Energy, Elsevier, vol. 76(C), pages 614-621.
    14. Ghobadian, Barat, 2012. "Liquid biofuels potential and outlook in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4379-4384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Zeting & Su, Ruizhi & Feng, Chunyu, 2020. "Thermodynamic analysis and multi-objective optimization of a novel power generation system driven by geothermal energy," Energy, Elsevier, vol. 199(C).
    2. Ooi, Jong Boon & Kau, Chia Chuin & Manoharan, Dilrukshan Naveen & Wang, Xin & Tran, Manh-Vu & Hung, Yew Mun, 2023. "Effects of multi-walled carbon nanotubes on the combustion, performance, and emission characteristics of a single-cylinder diesel engine fueled with palm-oil biodiesel-diesel blend," Energy, Elsevier, vol. 281(C).
    3. Sokratis Stoumpos & Gerasimos Theotokatos, 2020. "Multiobjective Optimisation of a Marine Dual Fuel Engine Equipped with Exhaust Gas Recirculation and Air Bypass Systems," Energies, MDPI, vol. 13(19), pages 1-20, September.
    4. Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan & Chang, Ke & Meng, Hao & Wang, Xin, 2023. "Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm," Energy, Elsevier, vol. 263(PD).
    5. Wang, Huaiyu & Ji, Changwei & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan, 2022. "Towards a comprehensive optimization of the intake characteristics for side ported Wankel rotary engines by coupling machine learning with genetic algorithm," Energy, Elsevier, vol. 261(PB).
    6. Rajkumar, Sundararajan & Das, Arnab & Thangaraja, Jeyaseelan, 2022. "Integration of artificial neural network, multi-objective genetic algorithm and phenomenological combustion modelling for effective operation of biodiesel blends in an automotive engine," Energy, Elsevier, vol. 239(PA).
    7. Liu, Zhijian & Li, Ying & Fan, Guangyao & Wu, Di & Guo, Jiacheng & Jin, Guangya & Zhang, Shicong & Yang, Xinyan, 2022. "Co-optimization of a novel distributed energy system integrated with hybrid energy storage in different nearly zero energy community scenarios," Energy, Elsevier, vol. 247(C).
    8. Shang, Jingyi & Gao, Jinfeng & Jiang, Xin & Liu, Mingguang & Liu, Dunnan, 2023. "Optimal configuration of hybrid energy systems considering power to hydrogen and electricity-price prediction: A two-stage multi-objective bi-level framework," Energy, Elsevier, vol. 263(PF).
    9. Gharehghani, Ayat & Abbasi, Hamid Reza & Alizadeh, Pouria, 2021. "Application of machine learning tools for constrained multi-objective optimization of an HCCI engine," Energy, Elsevier, vol. 233(C).
    10. Tang, Wei & Feng, Huijun & Chen, Lingen & Xie, Zhuojun & Shi, Junchao, 2021. "Constructal design for a boiler economizer," Energy, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farzad Jaliliantabar & Barat Ghobadian & Gholamhassan Najafi & Talal Yusaf, 2018. "Artificial Neural Network Modeling and Sensitivity Analysis of Performance and Emissions in a Compression Ignition Engine Using Biodiesel Fuel," Energies, MDPI, vol. 11(9), pages 1-24, September.
    2. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    3. Jaliliantabar, Farzad & Ghobadian, Barat & Carlucci, Antonio Paolo & Najafi, Gholamhassan & Mamat, Rizalman & Ficarella, Antonio & Strafella, Luciano & Santino, Angelo & De Domenico, Stefania, 2020. "A comprehensive study on the effect of pilot injection, EGR rate, IMEP and biodiesel characteristics on a CRDI diesel engine," Energy, Elsevier, vol. 194(C).
    4. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    5. Zaharin, M.S.M. & Abdullah, N.R. & Najafi, G. & Sharudin, H. & Yusaf, T., 2017. "Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 475-493.
    6. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    7. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    8. Hosseini, Seyed Ehsan & Andwari, Amin Mahmoudzadeh & Wahid, Mazlan Abdul & Bagheri, Ghobad, 2013. "A review on green energy potentials in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 533-545.
    9. Khairul Azly Zahan & Manabu Kano, 2018. "Biodiesel Production from Palm Oil, Its By-Products, and Mill Effluent: A Review," Energies, MDPI, vol. 11(8), pages 1-25, August.
    10. Avinash, A. & Subramaniam, D. & Murugesan, A., 2014. "Bio-diesel—A global scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 517-527.
    11. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    12. Sahar Safarian & Sorena Sattari & Zeinab Hamidzadeh, 2018. "Sustainability Assessment of Biodiesel Supply Chain from Various Biomasses and Conversion Technologies," Biophysical Economics and Resource Quality, Springer, vol. 3(2), pages 1-15, June.
    13. Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
    14. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    15. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    16. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.
    17. Suman Dey & Akhilendra Pratap Singh & Sameer Sheshrao Gajghate & Sagnik Pal & Bidyut Baran Saha & Madhujit Deb & Pankaj Kumar Das, 2023. "Optimization of CI Engine Performance and Emissions Using Alcohol–Biodiesel Blends: A Regression Analysis Approach," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    18. Rahman, S.M. Ashrafur & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Abedin, M.J., 2014. "Assessment of emission and performance of compression ignition engine with varying injection timing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 221-230.
    19. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.
    20. Huang, Haozhong & Wang, Qingxin & Shi, Cheng & Liu, Qingsheng & Zhou, Chengzhong, 2016. "Comparative study of effects of pilot injection and fuel properties on low temperature combustion in diesel engine under a medium EGR rate," Applied Energy, Elsevier, vol. 179(C), pages 1194-1208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.