IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v183y2019icp825-836.html
   My bibliography  Save this article

Quantitative failure rates and modes analysis in photovoltaic plants

Author

Listed:
  • Gallardo-Saavedra, Sara
  • Hernández-Callejo, Luis
  • Duque-Pérez, Oscar

Abstract

The greater challenge that researchers address and indicate while investigating about photovoltaic (PV) system failures during their Operation and Maintenance (O&M) is the lack of accessible reliable real quantitative data. For this reason, several publications have focused on this problem through a qualitative approach. However, this fact is one of the greater strengths of this paper, in which the quantitative information from the historical data of sixty-three PV plants portfolio in Italy and Spain has been accessible. Results obtained from the research provide essential information for main players involved in PV plants to identify failure modes and rates, in order to reduce investment risk and to focus their maintenance efforts on preventing those failures, improving longevity and performance of PV plants. The paper presents failure rates per PV Site and per kW, considering all portfolio and dividing it regarding five PV plants groups per size, distribution of failures per element, Mean Time Between Failures (MTBF), reparation times per affected element and the main failures modes examining each of the almost 100,000 complete alarms registered during the five years analyzed.

Suggested Citation

  • Gallardo-Saavedra, Sara & Hernández-Callejo, Luis & Duque-Pérez, Oscar, 2019. "Quantitative failure rates and modes analysis in photovoltaic plants," Energy, Elsevier, vol. 183(C), pages 825-836.
  • Handle: RePEc:eee:energy:v:183:y:2019:i:c:p:825-836
    DOI: 10.1016/j.energy.2019.06.185
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219313234
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gallardo-Saavedra, Sara & Hernández-Callejo, Luis & Duque-Perez, Oscar, 2018. "Technological review of the instrumentation used in aerial thermographic inspection of photovoltaic plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 566-579.
    2. Djordjevic, Sinisa & Parlevliet, David & Jennings, Philip, 2014. "Detectable faults on recently installed solar modules in Western Australia," Renewable Energy, Elsevier, vol. 67(C), pages 215-221.
    3. Zhang, Peng & Li, Wenyuan & Li, Sherwin & Wang, Yang & Xiao, Weidong, 2013. "Reliability assessment of photovoltaic power systems: Review of current status and future perspectives," Applied Energy, Elsevier, vol. 104(C), pages 822-833.
    4. van der Plas, Robert J & Hankins, Mark, 1998. "Solar electricity in Africa: a reality," Energy Policy, Elsevier, vol. 26(4), pages 295-305, March.
    5. Zini, Gabriele & Mangeant, Christophe & Merten, Jens, 2011. "Reliability of large-scale grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 36(9), pages 2334-2340.
    6. Colli, Alessandra, 2015. "Failure mode and effect analysis for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 804-809.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gallardo-Saavedra, Sara & Hernández-Callejo, Luis & Alonso-García, María del Carmen & Santos, José Domingo & Morales-Aragonés, José Ignacio & Alonso-Gómez, Víctor & Moretón-Fernández, Ángel & González, 2020. "Nondestructive characterization of solar PV cells defects by means of electroluminescence, infrared thermography, I–V curves and visual tests: Experimental study and comparison," Energy, Elsevier, vol. 205(C).
    2. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2020. "Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization," Energy, Elsevier, vol. 195(C).
    3. Zhang, Minhui & Zhang, Qin & Zhou, Dequn & Wang, Lei, 2021. "Punishment or reward? Strategies of stakeholders in the quality of photovoltaic plants based on evolutionary game analysis in China," Energy, Elsevier, vol. 220(C).
    4. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    5. Lisa B. Bosman & Walter D. Leon-Salas & William Hutzel & Esteban A. Soto, 2020. "PV System Predictive Maintenance: Challenges, Current Approaches, and Opportunities," Energies, MDPI, vol. 13(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    2. A. Sayed & M. El-Shimy & M. El-Metwally & M. Elshahed, 2019. "Reliability, Availability and Maintainability Analysis for Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 12(7), pages 1-18, March.
    3. Ferdinando Chiacchio & Fabio Famoso & Diego D’Urso & Sebastian Brusca & Jose Ignacio Aizpurua & Luca Cedola, 2018. "Dynamic Performance Evaluation of Photovoltaic Power Plant by Stochastic Hybrid Fault Tree Automaton Model," Energies, MDPI, vol. 11(2), pages 1-22, January.
    4. Stefan Baschel & Elena Koubli & Jyotirmoy Roy & Ralph Gottschalg, 2018. "Impact of Component Reliability on Large Scale Photovoltaic Systems’ Performance," Energies, MDPI, vol. 11(6), pages 1-16, June.
    5. Sayed, A. & EL-Shimy, M. & El-Metwally, M. & Elshahed, M., 2020. "Impact of subsystems on the overall system availability for the large scale grid-connected photovoltaic systems," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    6. Peters, Lennart & Madlener, Reinhard, 2017. "Economic evaluation of maintenance strategies for ground-mounted solar photovoltaic plants," Applied Energy, Elsevier, vol. 199(C), pages 264-280.
    7. Cai, Baoping & Liu, Yonghong & Ma, Yunpeng & Huang, Lei & Liu, Zengkai, 2015. "A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults," Energy, Elsevier, vol. 93(P2), pages 1308-1320.
    8. Mellit, A. & Tina, G.M. & Kalogirou, S.A., 2018. "Fault detection and diagnosis methods for photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1-17.
    9. Dag, H.I. & Buker, M.S., 2020. "Performance evaluation and degradation assessment of crystalline silicon based photovoltaic rooftop technologies under outdoor conditions," Renewable Energy, Elsevier, vol. 156(C), pages 1292-1300.
    10. Mosadeghy, Mehdi & Yan, Ruifeng & Saha, Tapan Kumar, 2016. "Impact of PV penetration level on the capacity value of South Australian wind farms," Renewable Energy, Elsevier, vol. 85(C), pages 1135-1142.
    11. Isidoro Lillo-Bravo & Pablo González-Martínez & Miguel Larrañeta & José Guasumba-Codena, 2018. "Impact of Energy Losses Due to Failures on Photovoltaic Plant Energy Balance," Energies, MDPI, vol. 11(2), pages 1-23, February.
    12. Segovia Ramírez, Isaac & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2022. "A novel approach to optimize the positioning and measurement parameters in photovoltaic aerial inspections," Renewable Energy, Elsevier, vol. 187(C), pages 371-389.
    13. Ikeme, J. & Ebohon, Obas John, 2005. "Nigeria's electric power sector reform: what should form the key objectives?," Energy Policy, Elsevier, vol. 33(9), pages 1213-1221, June.
    14. Terracciano, Anthony Carmine & Vasu, Subith S. & Orlovskaya, Nina, 2016. "Design and development of a porous heterogeneous combustor for efficient heat production by combustion of liquid and gaseous fuels," Applied Energy, Elsevier, vol. 179(C), pages 228-236.
    15. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    16. Marian Liberos & Raúl González-Medina & Gabriel Garcerá & Emilio Figueres, 2019. "A Method to Enhance the Global Efficiency of High-Power Photovoltaic Inverters Connected in Parallel," Energies, MDPI, vol. 12(11), pages 1-19, June.
    17. Zhang, Minhui & Zhang, Qin & Zhou, Dequn & Wang, Lei, 2021. "Punishment or reward? Strategies of stakeholders in the quality of photovoltaic plants based on evolutionary game analysis in China," Energy, Elsevier, vol. 220(C).
    18. Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2021. "Impacts of regional industrial electricity savings on the development of future coal capacity per electricity grid and related air pollution emissions – A case study for China," Applied Energy, Elsevier, vol. 282(PB).
    19. Zhou, P. & Jin, R.Y. & Fan, L.W., 2016. "Reliability and economic evaluation of power system with renewables: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 537-547.
    20. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:183:y:2019:i:c:p:825-836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.