IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v180y2019icp751-762.html
   My bibliography  Save this article

Spatial distribution of the theoretical potential of waste heat from sewage: A statistical approach

Author

Listed:
  • Pelda, Johannes
  • Holler, Stefan

Abstract

This paper statistically validates a novel methodology that quantifies, qualifies and spatially allocates the waste heat potential of sewage systems on an urban district level, in all cases in which real data from the sewage system does not exist or is not publicly available. The methodology is based on open data and open source technology and can be adapted to various types of cities. The results, from the application of the methodology for an example city, show that the methodology robustly calculated the paths and waste water volumetric flow from waste water sources to the waste water treatment plant. The modelled system maps the sewage system accurately within areas that have a population density close to the average. Despite small inaccuracies in the overall mapping, the methodology is able to present a good estimation of spatially distributed waste heat from water flows of the sewage system in the example city.

Suggested Citation

  • Pelda, Johannes & Holler, Stefan, 2019. "Spatial distribution of the theoretical potential of waste heat from sewage: A statistical approach," Energy, Elsevier, vol. 180(C), pages 751-762.
  • Handle: RePEc:eee:energy:v:180:y:2019:i:c:p:751-762
    DOI: 10.1016/j.energy.2019.05.133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219310138
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rämä, Miika & Wahlroos, Mikko, 2018. "Introduction of new decentralised renewable heat supply in an existing district heating system," Energy, Elsevier, vol. 154(C), pages 68-79.
    2. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    3. Ziemele, Jelena & Cilinskis, Einars & Blumberga, Dagnija, 2018. "Pathway and restriction in district heating systems development towards 4th generation district heating," Energy, Elsevier, vol. 152(C), pages 108-118.
    4. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    5. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Connolly, David, 2018. "Heat Roadmap Europe: Identifying local heat demand and supply areas with a European thermal atlas," Energy, Elsevier, vol. 158(C), pages 281-292.
    6. Bertrand, Alexandre & Aggoune, Riad & Maréchal, François, 2017. "In-building waste water heat recovery: An urban-scale method for the characterisation of water streams and the assessment of energy savings and costs," Applied Energy, Elsevier, vol. 192(C), pages 110-125.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dranka, Géremi Gilson & Ferreira, Paula, 2020. "Load flexibility potential across residential, commercial and industrial sectors in Brazil," Energy, Elsevier, vol. 201(C).
    2. Antonello Cammarano & Vincenzo Varriale & Francesca Michelino & Mauro Caputo, 2022. "Open and Crowd-Based Platforms: Impact on Organizational and Market Performance," Sustainability, MDPI, vol. 14(4), pages 1-26, February.
    3. Ieva Pakere & Dagnija Blumberga & Anna Volkova & Kertu Lepiksaar & Agate Zirne, 2023. "Valorisation of Waste Heat in Existing and Future District Heating Systems," Energies, MDPI, vol. 16(19), pages 1-22, September.
    4. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
    5. Revesz, Akos & Jones, Phil & Dunham, Chris & Davies, Gareth & Marques, Catarina & Matabuena, Rodrigo & Scott, Jim & Maidment, Graeme, 2020. "Developing novel 5th generation district energy networks," Energy, Elsevier, vol. 201(C).
    6. Grzegorz Bartnicki & Piotr Ziembicki & Marcin Klimczak & Agnieszka Kalitka, 2022. "The Potential of Heat Recovery from Wastewater Considering the Protection of Wastewater Treatment Plant Technology," Energies, MDPI, vol. 16(1), pages 1-15, December.
    7. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    8. Horak, Daniel & Hainoun, Ali & Neugebauer, Georg & Stoeglehner, Gernot, 2022. "A review of spatio-temporal urban energy system modeling for urban decarbonization strategy formulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    2. Doračić, Borna & Pukšec, Tomislav & Schneider, Daniel Rolph & Duić, Neven, 2020. "The effect of different parameters of the excess heat source on the levelized cost of excess heat," Energy, Elsevier, vol. 201(C).
    3. Chambers, Jonathan & Narula, Kapil & Sulzer, Matthias & Patel, Martin K., 2019. "Mapping district heating potential under evolving thermal demand scenarios and technologies: A case study for Switzerland," Energy, Elsevier, vol. 176(C), pages 682-692.
    4. Salah Vaisi & Saleh Mohammadi & Kyoumars Habibi, 2021. "Heat Mapping, a Method for Enhancing the Sustainability of the Smart District Heat Networks," Energies, MDPI, vol. 14(17), pages 1-17, September.
    5. Formhals, Julian & Feike, Frederik & Hemmatabady, Hoofar & Welsch, Bastian & Sass, Ingo, 2021. "Strategies for a transition towards a solar district heating grid with integrated seasonal geothermal energy storage," Energy, Elsevier, vol. 228(C).
    6. Michele Tunzi & Matthieu Ruysschaert & Svend Svendsen & Kevin Michael Smith, 2020. "Double Loop Network for Combined Heating and Cooling in Low Heat Density Areas," Energies, MDPI, vol. 13(22), pages 1-24, November.
    7. Simeoni, Patrizia & Ciotti, Gellio & Cottes, Mattia & Meneghetti, Antonella, 2019. "Integrating industrial waste heat recovery into sustainable smart energy systems," Energy, Elsevier, vol. 175(C), pages 941-951.
    8. Lund, Henrik & Østergaard, Poul Alberg & Chang, Miguel & Werner, Sven & Svendsen, Svend & Sorknæs, Peter & Thorsen, Jan Eric & Hvelplund, Frede & Mortensen, Bent Ole Gram & Mathiesen, Brian Vad & Boje, 2018. "The status of 4th generation district heating: Research and results," Energy, Elsevier, vol. 164(C), pages 147-159.
    9. Wendel, Frank & Blesl, Markus & Brodecki, Lukasz & Hufendiek, Kai, 2022. "Expansion or decommission? – Transformation of existing district heating networks by reducing temperature levels in a cost-optimum network design," Applied Energy, Elsevier, vol. 310(C).
    10. Chambers, Jonathan & Zuberi, S. & Jibran, M. & Narula, Kapil & Patel, Martin K., 2020. "Spatiotemporal analysis of industrial excess heat supply for district heat networks in Switzerland," Energy, Elsevier, vol. 192(C).
    11. Sorknæs, Peter & Østergaard, Poul Alberg & Thellufsen, Jakob Zinck & Lund, Henrik & Nielsen, Steffen & Djørup, Søren & Sperling, Karl, 2020. "The benefits of 4th generation district heating in a 100% renewable energy system," Energy, Elsevier, vol. 213(C).
    12. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    13. Sayegh, M.A. & Danielewicz, J. & Nannou, T. & Miniewicz, M. & Jadwiszczak, P. & Piekarska, K. & Jouhara, H., 2017. "Trends of European research and development in district heating technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1183-1192.
    14. Collins, Seán & Deane, J.P. & Ó Gallachóir, Brian, 2017. "Adding value to EU energy policy analysis using a multi-model approach with an EU-28 electricity dispatch model," Energy, Elsevier, vol. 130(C), pages 433-447.
    15. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    16. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    17. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    18. Grundahl, Lars & Nielsen, Steffen & Lund, Henrik & Möller, Bernd, 2016. "Comparison of district heating expansion potential based on consumer-economy or socio-economy," Energy, Elsevier, vol. 115(P3), pages 1771-1778.
    19. Bürger, Veit & Steinbach, Jan & Kranzl, Lukas & Müller, Andreas, 2019. "Third party access to district heating systems - Challenges for the practical implementation," Energy Policy, Elsevier, vol. 132(C), pages 881-892.
    20. Vinagre Díaz, Juan José & Wilby, Mark Richard & Rodríguez González, Ana Belén, 2015. "The wasted energy: A metric to set up appropriate targets in our path towards fully renewable energy systems," Energy, Elsevier, vol. 90(P1), pages 900-909.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:180:y:2019:i:c:p:751-762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.