IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v171y2019icp795-808.html
   My bibliography  Save this article

Experimental study on spray and emission characteristics of a diesel engine fueled with preheated bio-oils and diesel fuel

Author

Listed:
  • Hoang, Anh Tuan

Abstract

Bio-oils have been known with some advantages such as biodegradability, renewable, oxygen content, no-sulfur content. However, high viscosity, high surface tension and density due to the large structure may be the main causes strongly affecting the spray characteristics, mixture formation, combustion process, and emission characteristics of diesel engines running on bio-oils. In this work, the evaluation of the relationship between the spray parameters of used bio-oils including spray penetration (S) and cone angle (ɸ), and preheating temperature compared to fossil diesel fuel was conducted. Besides, the influence of the spray parameters on the breakup mechanism, brake thermal efficiency (ηe), heat release rate (HRR), and emission characteristics of an 80hp-diesel engine was reported. As a result, pure bio-oil was preheated to 105 °C to achieve the similarity of some physical properties and spray parameters compared to diesel fuel, but emission parameters of carbon monoxide (CO) and unburnt hydrocarbon (UHC) were 23.10% and 23.36% respectively higher. Meanwhile, brake thermal efficiency (ηe), and emissions of CO2, NOx, smoke were 3.36%, and 12.00%, 8.86%, 48.48% respectively lower than those of fossil diesel fuel. The findings in this paper showed further evidence in the direct use of pure biodiesel as a fuel for diesel engines.

Suggested Citation

  • Hoang, Anh Tuan, 2019. "Experimental study on spray and emission characteristics of a diesel engine fueled with preheated bio-oils and diesel fuel," Energy, Elsevier, vol. 171(C), pages 795-808.
  • Handle: RePEc:eee:energy:v:171:y:2019:i:c:p:795-808
    DOI: 10.1016/j.energy.2019.01.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219300787
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.01.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    2. Atabani, A.E. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Yussof, Hafizuddin Wan & Chong, W.T. & Lee, Keat Teong, 2013. "A comparative evaluation of physical and chemical properties of biodiesel synthesized from edible and non-edible oils and study on the effect of biodiesel blending," Energy, Elsevier, vol. 58(C), pages 296-304.
    3. Hazar, Hanbey & Aydin, Hüseyin, 2010. "Performance and emission evaluation of a CI engine fueled with preheated raw rapeseed oil (RRO)-diesel blends," Applied Energy, Elsevier, vol. 87(3), pages 786-790, March.
    4. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Giakoumis, Evangelos G. & Papagiannakis, Roussos G. & Kyritsis, Dimitrios C., 2014. "Influence of properties of various common bio-fuels on the combustion and emission characteristics of high-speed DI (direct injection) diesel engine: Vegetable oil, bio-diesel, ethanol, n-butanol, die," Energy, Elsevier, vol. 73(C), pages 354-366.
    5. How, H.G. & Teoh, Y.H. & Masjuki, H.H. & Kalam, M.A., 2012. "Impact of coconut oil blends on particulate-phase PAHs and regulated emissions from a light duty diesel engine," Energy, Elsevier, vol. 48(1), pages 500-509.
    6. Chauhan, Bhupendra Singh & Kumar, Naveen & Du Jun, Yong & Lee, Kum Bae, 2010. "Performance and emission study of preheated Jatropha oil on medium capacity diesel engine," Energy, Elsevier, vol. 35(6), pages 2484-2492.
    7. Kalam, M.A. & Masjuki, H.H. & Jayed, M.H. & Liaquat, A.M., 2011. "Emission and performance characteristics of an indirect ignition diesel engine fuelled with waste cooking oil," Energy, Elsevier, vol. 36(1), pages 397-402.
    8. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.
    9. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    10. Zhou, Huairong & Qian, Yu & Kraslawski, Andrzej & Yang, Qingchun & Yang, Siyu, 2017. "Life-cycle assessment of alternative liquid fuels production in China," Energy, Elsevier, vol. 139(C), pages 507-522.
    11. Deng, Yuanwang & Liu, Huawei & Zhao, Xiaohuan & E, Jiaqiang & Chen, Jianmei, 2018. "Effects of cold start control strategy on cold start performance of the diesel engine based on a comprehensive preheat diesel engine model," Applied Energy, Elsevier, vol. 210(C), pages 279-287.
    12. Chauhan, Bhupendra Singh & Kumar, Naveen & Cho, Haeng Muk & Lim, Hee Chang, 2013. "A study on the performance and emission of a diesel engine fueled with Karanja biodiesel and its blends," Energy, Elsevier, vol. 56(C), pages 1-7.
    13. Fahd, M. Ebna Alam & Wenming, Yang & Lee, P.S. & Chou, S.K. & Yap, Christopher R., 2013. "Experimental investigation of the performance and emission characteristics of direct injection diesel engine by water emulsion diesel under varying engine load condition," Applied Energy, Elsevier, vol. 102(C), pages 1042-1049.
    14. Behçet, Rasim & Yumrutaş, Recep & Oktay, Hasan, 2014. "Effects of fuels produced from fish and cooking oils on performance and emissions of a diesel engine," Energy, Elsevier, vol. 71(C), pages 645-655.
    15. Zareh, Parvaneh & Zare, Ali Asghar & Ghobadian, Barat, 2017. "Comparative assessment of performance and emission characteristics of castor, coconut and waste cooking based biodiesel as fuel in a diesel engine," Energy, Elsevier, vol. 139(C), pages 883-894.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Anatolyevich Markov & Bowen Sa & Sergey Nikolaevich Devyanin & Anatoly Anatolyevich Zherdev & Pablo Ramon Vallejo Maldonado & Sergey Anatolyevich Zykov & Aleksandr Dmitrievich Denisov & Hewag, 2021. "Investigation of the Performances of a Diesel Engine Operating on Blended and Emulsified Biofuels from Rapeseed Oil," Energies, MDPI, vol. 14(20), pages 1-28, October.
    2. Thi Lan Anh Vu & Tien Quoc Le, 2019. "Development Orientation For Higher Education Training Programme Of Mechanical Engineering In Industrial Revolution 4.0: A Perspective In Vietnam," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 71-73, January.
    3. Diep Thi Ngoc Hoang & Thu Thi Anh Do, 2019. "Integration Of Teamwork Skills In Teaching In Order To Meet The Learning Outcomes In The Cdio Syllabus: Application To Technology And Engineering," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(2), pages 1-5, March.
    4. Van Viet Pham, 2019. "Correlation Of Overall Heat Transfer Coefficient In The Three Zones Of Wire And Tube Condenser," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(2), pages 87-97, March.
    5. Alex Gander & Dan Sykes & Raúl Payri & Guillaume de Sercey & Dave Kennaird & Martin Gold & Richard J. Pearson & Cyril Crua, 2021. "High-Speed Infrared Measurement of Injector Tip Temperature during Diesel Engine Operation," Energies, MDPI, vol. 14(15), pages 1-19, July.
    6. Hoang, Anh Tuan & Tabatabaei, Meisam & Aghbashlo, Mortaza & Carlucci, Antonio Paolo & Ölçer, Aykut I. & Le, Anh Tuan & Ghassemi, Abbas, 2021. "Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Ludovic Lamoot & Brady Manescau & Khaled Chetehouna & Nicolas Gascoin, 2021. "Review on the Effect of the Phenomenon of Cavitation in Combustion Efficiency and the Role of Biofuels as a Solution against Cavitation," Energies, MDPI, vol. 14(21), pages 1-35, November.
    9. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    10. Kihyun Kim & Ocktaeck Lim, 2020. "Investigation of the Spray Development Process of Gasoline-Biodiesel Blended Fuel Sprays in a Constant Volume Chamber," Energies, MDPI, vol. 13(18), pages 1-22, September.
    11. Yadav, Prem Shanker & Said, Zafar & Gautam, Raghvendra & Raman, Roshan & Caliskan, Hakan, 2023. "Novel investigation on atomization, performance, and emission characteristics of preheated jatropha oil methyl ester and ethyl ester," Energy, Elsevier, vol. 270(C).
    12. Che Mat, S. & Idroas, M.Y. & Teoh, Y.H. & Hamid, M.F. & Sharudin, H. & Pahmi, M.A.A.H., 2022. "Optimization of ternary blends among refined palm oil-hexanol-melaleuca cajuputi oil and engine emissions analysis of the blends," Renewable Energy, Elsevier, vol. 196(C), pages 451-461.
    13. Quoc Viet Pham & Van Hai Nguyen, 2019. "Proposal Of Some Advanced Technology Methods In The Assembly Of The Shaft System - Main Engine On The Small Cargo Ships," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 81-84, February.
    14. Tran Thi Thanh Van & Tran Ngoc Thanh & Phạm Ngoc Vuong & Nguyen Duong Nam, 2019. "Calculation Of Cylindrical Products Made Of Composite Materials Using Wrap Technology," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(2), pages 76-78, March.
    15. Van Hai Nguyen & Duc Thiep Cao & Thi Hien Do, 2019. "Research And Calculation Of The Biogas Fuel Supply System For A Small Marine Diesel Engine," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 64-70, January.
    16. Muteeb Ul Haq & Ali Turab Jafry & Saad Ahmad & Taqi Ahmad Cheema & Munib Qasim Ansari & Naseem Abbas, 2022. "Recent Advances in Fuel Additives and Their Spray Characteristics for Diesel-Based Blends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    17. Tien Quoc Le & Diep Thi Ngoc Hoang & Thu Thi Anh Do, 2019. "Learning Outcomes For Training Program By Cdio Approach Applied To Mechanical Industry 4.0," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 50-55, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    2. Puneet Verma & Svetlana Stevanovic & Ali Zare & Gaurav Dwivedi & Thuy Chu Van & Morgan Davidson & Thomas Rainey & Richard J. Brown & Zoran D. Ristovski, 2019. "An Overview of the Influence of Biodiesel, Alcohols, and Various Oxygenated Additives on the Particulate Matter Emissions from Diesel Engines," Energies, MDPI, vol. 12(10), pages 1-25, May.
    3. No, Soo-Young, 2017. "Application of straight vegetable oil from triglyceride based biomass to IC engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 80-97.
    4. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    5. Chauhan, Bhupendra Singh & Singh, Ram Kripal & Cho, H.M. & Lim, H.C., 2016. "Practice of diesel fuel blends using alternative fuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1358-1368.
    6. Zaharin, M.S.M. & Abdullah, N.R. & Najafi, G. & Sharudin, H. & Yusaf, T., 2017. "Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 475-493.
    7. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    8. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Panneerselvam, N. & Murugesan, A. & Vijayakumar, C. & Kumaravel, A. & Subramaniam, D. & Avinash, A., 2015. "Effects of injection timing on bio-diesel fuelled engine characteristics—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 17-31.
    10. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    11. Sajjadi, Baharak & Raman, Abdul Aziz Abdul & Arandiyan, Hamidreza, 2016. "A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: Composition, specifications and prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 62-92.
    12. Russo, D. & Dassisti, M. & Lawlor, V. & Olabi, A.G., 2012. "State of the art of biofuels from pure plant oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4056-4070.
    13. Ogunkoya, Dolanimi & Li, Shuai & Rojas, Orlando J. & Fang, Tiegang, 2015. "Performance, combustion, and emissions in a diesel engine operated with fuel-in-water emulsions based on lignin," Applied Energy, Elsevier, vol. 154(C), pages 851-861.
    14. Adhirath Mandal & HaengMuk Cho & Bhupendra Singh Chauhan, 2022. "Experimental Investigation of Multiple Fry Waste Soya Bean Oil in an Agricultural CI Engine," Energies, MDPI, vol. 15(9), pages 1-14, April.
    15. Ramalingam, Senthil & Rajendran, Silambarasan & Ganesan, Pranesh & Govindasamy, Mohan, 2018. "Effect of operating parameters and antioxidant additives with biodiesels to improve the performance and reducing the emissions in a compression ignition engine – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 775-788.
    16. Vellaiyan, Suresh, 2020. "Combustion, performance and emission evaluation of a diesel engine fueled with soybean biodiesel and its water blends," Energy, Elsevier, vol. 201(C).
    17. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    18. Mardhiah, H. Haziratul & Ong, Hwai Chyuan & Masjuki, H.H. & Lim, Steven & Lee, H.V., 2017. "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1225-1236.
    19. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    20. Iqbal Shajahan Mohamed & Elumalai Perumal Venkatesan & Murugesan Parthasarathy & Sreenivasa Reddy Medapati & Mohamed Abbas & Erdem Cuce & Saboor Shaik, 2022. "Optimization of Performance and Emission Characteristics of the CI Engine Fueled with Preheated Palm Oil in Blends with Diesel Fuel," Sustainability, MDPI, vol. 14(23), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:171:y:2019:i:c:p:795-808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.