IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v167y2019icp484-497.html
   My bibliography  Save this article

Thermodynamic selection criteria of zeotropic mixtures for subcritical organic Rankine cycle

Author

Listed:
  • Miao, Zheng
  • Zhang, Kai
  • Wang, Mengxiao
  • Xu, Jinliang

Abstract

Although using zeotropic mixtures in the organic Rankine cycle (ORC) system can improve its performance, the selection of the mixture working fluid is still a great challenge due to the lack of selection criteria. In the present work, the thermodynamic selection criteria of zeotropic mixtures is proposed based on the exergy analysis of the subcritical ORC. The mixture composition can be directly determined according to the thermophysical properties of working fluids without massive thermodynamic calculation. The effect of temperature match between the working fluids and the heat source/sink on the system performance is analyzed. And the overall exergy efficiency is set as the optimization index. For the heat source without limit to the outlet temperature, the improvement of the temperature match in the evaporator exhibits more significant influence on the cycle performance than that in the condenser. Thus, the match condition with the heat source shoud be firstly satified when selecting working fluids. The proper temperature glide in the condenser can further improve the cycle performance. The ‘wet’ mixtures have relatively lower cycle performance compare to ‘dry’ and ‘isentropic’ ones. The steps of using this selection criteria and a case study to validate it are also illustrated.

Suggested Citation

  • Miao, Zheng & Zhang, Kai & Wang, Mengxiao & Xu, Jinliang, 2019. "Thermodynamic selection criteria of zeotropic mixtures for subcritical organic Rankine cycle," Energy, Elsevier, vol. 167(C), pages 484-497.
  • Handle: RePEc:eee:energy:v:167:y:2019:i:c:p:484-497
    DOI: 10.1016/j.energy.2018.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218322060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heberle, Florian & Preißinger, Markus & Brüggemann, Dieter, 2012. "Zeotropic mixtures as working fluids in Organic Rankine Cycles for low-enthalpy geothermal resources," Renewable Energy, Elsevier, vol. 37(1), pages 364-370.
    2. Maraver, Daniel & Royo, Javier & Lemort, Vincent & Quoilin, Sylvain, 2014. "Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications," Applied Energy, Elsevier, vol. 117(C), pages 11-29.
    3. Chys, M. & van den Broek, M. & Vanslambrouck, B. & De Paepe, M., 2012. "Potential of zeotropic mixtures as working fluids in organic Rankine cycles," Energy, Elsevier, vol. 44(1), pages 623-632.
    4. Long, R. & Bao, Y.J. & Huang, X.M. & Liu, W., 2014. "Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery," Energy, Elsevier, vol. 73(C), pages 475-483.
    5. Zhao, Li & Bao, Junjiang, 2014. "Thermodynamic analysis of organic Rankine cycle using zeotropic mixtures," Applied Energy, Elsevier, vol. 130(C), pages 748-756.
    6. Miao, Zheng & Xu, Jinliang & Zhang, Kai, 2017. "Experimental and modeling investigation of an organic Rankine cycle system based on the scroll expander," Energy, Elsevier, vol. 134(C), pages 35-49.
    7. Yu, Haoshui & Feng, Xiao & Wang, Yufei, 2015. "A new pinch based method for simultaneous selection of working fluid and operating conditions in an ORC (Organic Rankine Cycle) recovering waste heat," Energy, Elsevier, vol. 90(P1), pages 36-46.
    8. Clemente, Stefano & Micheli, Diego & Reini, Mauro & Taccani, Rodolfo, 2012. "Energy efficiency analysis of Organic Rankine Cycles with scroll expanders for cogenerative applications," Applied Energy, Elsevier, vol. 97(C), pages 792-801.
    9. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    10. Ayachi, Fadhel & Boulawz Ksayer, Elias & Zoughaib, Assaad & Neveu, Pierre, 2014. "ORC optimization for medium grade heat recovery," Energy, Elsevier, vol. 68(C), pages 47-56.
    11. Magdalena Santos-Rodriguez, M. & Flores-Tlacuahuac, Antonio & Zavala, Victor M., 2017. "A stochastic optimization approach for the design of organic fluid mixtures for low-temperature heat recovery," Applied Energy, Elsevier, vol. 198(C), pages 145-159.
    12. Satanphol, K. & Pridasawas, W. & Suphanit, B., 2017. "A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat recovery," Energy, Elsevier, vol. 123(C), pages 326-339.
    13. Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2014. "Effect of condensation temperature glide on the performance of organic Rankine cycles with zeotropic mixture working fluids," Applied Energy, Elsevier, vol. 115(C), pages 394-404.
    14. Xu, Jinliang & Yu, Chao, 2014. "Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles," Energy, Elsevier, vol. 74(C), pages 719-733.
    15. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    16. Hung, T.C. & Shai, T.Y. & Wang, S.K., 1997. "A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat," Energy, Elsevier, vol. 22(7), pages 661-667.
    17. Vivian, Jacopo & Manente, Giovanni & Lazzaretto, Andrea, 2015. "A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources," Applied Energy, Elsevier, vol. 156(C), pages 727-746.
    18. Braimakis, Konstantinos & Preißinger, Markus & Brüggemann, Dieter & Karellas, Sotirios & Panopoulos, Kyriakos, 2015. "Low grade waste heat recovery with subcritical and supercritical Organic Rankine Cycle based on natural refrigerants and their binary mixtures," Energy, Elsevier, vol. 88(C), pages 80-92.
    19. Andreasen, J.G. & Larsen, U. & Knudsen, T. & Pierobon, L. & Haglind, F., 2014. "Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic Rankine cycles," Energy, Elsevier, vol. 73(C), pages 204-213.
    20. Hærvig, J. & Sørensen, K. & Condra, T.J., 2016. "Guidelines for optimal selection of working fluid for an organic Rankine cycle in relation to waste heat recovery," Energy, Elsevier, vol. 96(C), pages 592-602.
    21. Feng, Yongqiang & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery," Energy, Elsevier, vol. 82(C), pages 664-677.
    22. Florian Heberle & Dieter Brüggemann, 2015. "Thermo-Economic Evaluation of Organic Rankine Cycles for Geothermal Power Generation Using Zeotropic Mixtures," Energies, MDPI, vol. 8(3), pages 1-28, March.
    23. Wang, Dongxiang & Ling, Xiang & Peng, Hao & Liu, Lin & Tao, LanLan, 2013. "Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation," Energy, Elsevier, vol. 50(C), pages 343-352.
    24. Su, Wen & Zhao, Li & Deng, Shuai, 2017. "New knowledge on the temperature-entropy saturation boundary slope of working fluids," Energy, Elsevier, vol. 119(C), pages 211-217.
    25. Chen, Qicheng & Xu, Jinliang & Chen, Hongxia, 2012. "A new design method for Organic Rankine Cycles with constraint of inlet and outlet heat carrier fluid temperatures coupling with the heat source," Applied Energy, Elsevier, vol. 98(C), pages 562-573.
    26. Li, You-Rong & Du, Mei-Tang & Wu, Chun-Mei & Wu, Shuang-Ying & Liu, Chao, 2014. "Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery," Energy, Elsevier, vol. 77(C), pages 509-519.
    27. He, Chao & Liu, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2012. "The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle," Energy, Elsevier, vol. 38(1), pages 136-143.
    28. Shu, Gequn & Gao, Yuanyuan & Tian, Hua & Wei, Haiqiao & Liang, Xingyu, 2014. "Study of mixtures based on hydrocarbons used in ORC (Organic Rankine Cycle) for engine waste heat recovery," Energy, Elsevier, vol. 74(C), pages 428-438.
    29. Aljundi, Isam H., 2011. "Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle," Renewable Energy, Elsevier, vol. 36(4), pages 1196-1202.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xinxin & Zhang, Yin & Wang, Jingfu, 2020. "New classification of dry and isentropic working fluids and a method used to determine their optimal or worst condensation temperature used in Organic Rankine Cycle," Energy, Elsevier, vol. 201(C).
    2. Qiang Liu & Ran Chen & Xinliu Yang & Xiao Xiao, 2023. "Thermodynamic Analyses of Sub- and Supercritical ORCs Using R1234yf, R236ea and Their Mixtures as Working Fluids for Geothermal Power Generation," Energies, MDPI, vol. 16(15), pages 1-22, July.
    3. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2022. "Optimization of the boiler pressure and working fluid in a binary organic Rankine cycle for different heat sources," Energy, Elsevier, vol. 238(PA).
    4. Huang, Yisheng & Chen, Jianyong & Chen, Ying & Luo, Xianglong & Liang, Yingzong & He, Jiacheng & Yang, Zhi, 2022. "Performance explorations of an organic Rankine cycle featured with separating and mixing composition of zeotropic mixture," Energy, Elsevier, vol. 257(C).
    5. Luo, Xianglong & Wei, Youxing & Qiu, Guanfu & Liang, Yingzong & Chen, Jianyong & Yang, Zhi & Wang, Chao & Chen, Ying, 2020. "Simultaneous design and off-design operation optimization of a waste heat-driven organic Rankine cycle using a multi-period mathematical programming method," Energy, Elsevier, vol. 213(C).
    6. Costante M. Invernizzi & Abubakr Ayub & Gioele Di Marcoberardino & Paolo Iora, 2019. "Pure and Hydrocarbon Binary Mixtures as Possible Alternatives Working Fluids to the Usual Organic Rankine Cycles Biomass Conversion Systems," Energies, MDPI, vol. 12(21), pages 1-17, October.
    7. Cai, Jinwen & Shu, Gequn & Tian, Hua & Wang, Xuan & Wang, Rui & Shi, Xiaolei, 2020. "Validation and analysis of organic Rankine cycle dynamic model using zeotropic mixture," Energy, Elsevier, vol. 197(C).
    8. Braimakis, Konstantinos & Grispos, Victoras & Karellas, Sotirios, 2021. "Exergetic efficiency potential of double-stage ORCs with zeotropic mixtures of natural hydrocarbons and CO2," Energy, Elsevier, vol. 218(C).
    9. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2020. "Optimization of an improved power cycle for geothermal applications in Iran," Energy, Elsevier, vol. 209(C).
    10. Wang, Chenfang & Li, Qingshan & Wang, Chunmei & Zhang, Yangjun & Zhuge, Weilin, 2021. "Thermodynamic analysis of a hydrogen fuel cell waste heat recovery system based on a zeotropic organic Rankine cycle," Energy, Elsevier, vol. 232(C).
    11. Xinxin Zhang & Yin Zhang & Zhenlei Li & Jingfu Wang & Yuting Wu & Chongfang Ma, 2020. "Zeotropic Mixture Selection for an Organic Rankine Cycle Using a Single Screw Expander," Energies, MDPI, vol. 13(5), pages 1-20, February.
    12. Costante Invernizzi & Marco Binotti & Paola Bombarda & Gioele Di Marcoberardino & Paolo Iora & Giampaolo Manzolini, 2019. "Water Mixtures as Working Fluids in Organic Rankine Cycles," Energies, MDPI, vol. 12(13), pages 1-17, July.
    13. Woodland, Brandon J. & Ziviani, Davide & Braun, James E. & Groll, Eckhard A., 2020. "Considerations on alternative organic Rankine Cycle congurations for low-grade waste heat recovery," Energy, Elsevier, vol. 193(C).
    14. Zhou, Jianzhao & Chu, Yin Ting & Ren, Jingzheng & Shen, Weifeng & He, Chang, 2023. "Integrating machine learning and mathematical programming for efficient optimization of operating conditions in organic Rankine cycle (ORC) based combined systems," Energy, Elsevier, vol. 281(C).
    15. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
    16. Sun, Xiaocun & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Zhang, Yonghao & Yao, Yu & Sun, Rui & Shu, Gequn, 2022. "Analysis of an ideal composition tunable combined cooling and power cycle with CO2-based mixture," Energy, Elsevier, vol. 255(C).
    17. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    18. Miao, Zheng & Wang, Zhanbo & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Xu, Jinliang, 2023. "Development of selection criteria of zeotropic mixtures as working fluids for the trans-critical organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    19. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    20. Braimakis, Konstantinos & Mikelis, Angelos & Charalampidis, Antonios & Karellas, Sotirios, 2020. "Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery," Energy, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    2. Braimakis, Konstantinos & Mikelis, Angelos & Charalampidis, Antonios & Karellas, Sotirios, 2020. "Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery," Energy, Elsevier, vol. 203(C).
    3. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    5. Kajurek, Jakub & Rusowicz, Artur & Grzebielec, Andrzej & Bujalski, Wojciech & Futyma, Kamil & Rudowicz, Zbigniew, 2019. "Selection of refrigerants for a modified organic Rankine cycle," Energy, Elsevier, vol. 168(C), pages 1-8.
    6. Satanphol, K. & Pridasawas, W. & Suphanit, B., 2017. "A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat recovery," Energy, Elsevier, vol. 123(C), pages 326-339.
    7. Magdalena Santos-Rodriguez, M. & Flores-Tlacuahuac, Antonio & Zavala, Victor M., 2017. "A stochastic optimization approach for the design of organic fluid mixtures for low-temperature heat recovery," Applied Energy, Elsevier, vol. 198(C), pages 145-159.
    8. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    9. Hærvig, J. & Sørensen, K. & Condra, T.J., 2016. "Guidelines for optimal selection of working fluid for an organic Rankine cycle in relation to waste heat recovery," Energy, Elsevier, vol. 96(C), pages 592-602.
    10. Vivian, Jacopo & Manente, Giovanni & Lazzaretto, Andrea, 2015. "A general framework to select working fluid and configuration of ORCs for low-to-medium temperature heat sources," Applied Energy, Elsevier, vol. 156(C), pages 727-746.
    11. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    12. Wang, Enhua & Yu, Zhibin & Collings, Peter, 2017. "Dynamic control strategy of a distillation system for a composition-adjustable organic Rankine cycle," Energy, Elsevier, vol. 141(C), pages 1038-1051.
    13. Braimakis, Konstantinos & Grispos, Victoras & Karellas, Sotirios, 2021. "Exergetic efficiency potential of double-stage ORCs with zeotropic mixtures of natural hydrocarbons and CO2," Energy, Elsevier, vol. 218(C).
    14. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
    15. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    16. Feng, Yongqiang & Hung, TzuChen & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Performance comparison of low-grade ORCs (organic Rankine cycles) using R245fa, pentane and their mixtures based on the thermoeconomic multi-objective optimization and decision makings," Energy, Elsevier, vol. 93(P2), pages 2018-2029.
    17. Zhao, Li & Bao, Junjiang, 2014. "Thermodynamic analysis of organic Rankine cycle using zeotropic mixtures," Applied Energy, Elsevier, vol. 130(C), pages 748-756.
    18. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    19. Mohan, Sooraj & Dinesha, P. & Campana, Pietro Elia, 2022. "ANN-PSO aided selection of hydrocarbons as working fluid for low-temperature organic Rankine cycle and thermodynamic evaluation of optimal working fluid," Energy, Elsevier, vol. 259(C).
    20. Sánchez, Carlos J.N. & da Silva, Alexandre K., 2018. "Technical and environmental analysis of transcritical Rankine cycles operating with numerous CO2 mixtures," Energy, Elsevier, vol. 142(C), pages 180-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:167:y:2019:i:c:p:484-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.