IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v167y2019icp1224-1235.html
   My bibliography  Save this article

Observed and global climate model based changes in wind power potential over the Northern Hemisphere during 1979–2016

Author

Listed:
  • Tian, Qun
  • Huang, Gang
  • Hu, Kaiming
  • Niyogi, Dev

Abstract

Using an observed dataset, we study the changes of surface wind speeds from 1979 to 2016 over the Northern Hemisphere and their impacts on wind power potential. The results show that surface wind speeds were decreasing in the past four decades over most regions in the Northern Hemisphere, including North America, Europe and Asia. In conjunction with decreasing surface wind speeds, the wind power potential at the typical height of a commercial wind turbine was also declining over the past decades for most regions in the Northern Hemisphere. Approximately 30%, 50% and 80% of the stations lost over 30% of the wind power potential since 1979 in North America, Europe and Asia, respectively. In addition, the evaluation of climate models shows their relatively poor ability to simulate long-term temporal trends of surface winds, indicating the need for enhancing the process that can improve the reliability of climate models for wind energy assessments.

Suggested Citation

  • Tian, Qun & Huang, Gang & Hu, Kaiming & Niyogi, Dev, 2019. "Observed and global climate model based changes in wind power potential over the Northern Hemisphere during 1979–2016," Energy, Elsevier, vol. 167(C), pages 1224-1235.
  • Handle: RePEc:eee:energy:v:167:y:2019:i:c:p:1224-1235
    DOI: 10.1016/j.energy.2018.11.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421832231X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.11.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    2. Mirhosseini, M. & Sharifi, F. & Sedaghat, A., 2011. "Assessing the wind energy potential locations in province of Semnan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 449-459, January.
    3. Soulouknga, M.H. & Doka, S.Y. & N.Revanna, & N.Djongyang, & T.C.Kofane,, 2018. "Analysis of wind speed data and wind energy potential in Faya-Largeau, Chad, using Weibull distribution," Renewable Energy, Elsevier, vol. 121(C), pages 1-8.
    4. Pryor, S.C. & Barthelmie, R.J., 2010. "Climate change impacts on wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 430-437, January.
    5. Argüeso, D. & Businger, S., 2018. "Wind power characteristics of Oahu, Hawaii," Renewable Energy, Elsevier, vol. 128(PA), pages 324-336.
    6. Mayhoub, A.B. & Azzam, A., 1997. "A survey on the assessment of wind energy potential in Egypt," Renewable Energy, Elsevier, vol. 11(2), pages 235-247.
    7. Wang, Jianzhou & Hu, Jianming & Ma, Kailiang, 2016. "Wind speed probability distribution estimation and wind energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 881-899.
    8. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections," Renewable Energy, Elsevier, vol. 101(C), pages 29-40.
    9. Qing, Xiangyun, 2018. "Statistical analysis of wind energy characteristics in Santiago island, Cape Verde," Renewable Energy, Elsevier, vol. 115(C), pages 448-461.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Fa & Wang, Xunming & Sun, Fubao & Kleidon, Axel, 2023. "Potential impact of global stilling on wind energy production in China," Energy, Elsevier, vol. 263(PB).
    2. Liming Gou & Jian Zhang & Naiwen Li & Zongshui Wang & Jindong Chen & Lin Qi, 2022. "Weighted assignment fusion algorithm of evidence conflict based on Euclidean distance and weighting strategy, and application in the wind turbine system," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-20, January.
    3. Miao, Haozeyu & Xu, Haiming & Huang, Gang & Yang, Kai, 2023. "Evaluation and future projections of wind energy resources over the Northern Hemisphere in CMIP5 and CMIP6 models," Renewable Energy, Elsevier, vol. 211(C), pages 809-821.
    4. Martinez, A. & Murphy, L. & Iglesias, G., 2023. "Evolution of offshore wind resources in Northern Europe under climate change," Energy, Elsevier, vol. 269(C).
    5. Yu, Shuang & Vautard, Robert, 2022. "A transfer method to estimate hub-height wind speed from 10 meters wind speed based on machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    6. Martinez, A. & Iglesias, G., 2024. "Global wind energy resources decline under climate change," Energy, Elsevier, vol. 288(C).
    7. Costoya, X. & deCastro, M. & Santos, F. & Sousa, M.C. & Gómez-Gesteira, M., 2019. "Projections of wind energy resources in the Caribbean for the 21st century," Energy, Elsevier, vol. 178(C), pages 356-367.
    8. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    9. Miao, Haozeyu & Dong, Danhong & Huang, Gang & Hu, Kaiming & Tian, Qun & Gong, Yuanfa, 2020. "Evaluation of Northern Hemisphere surface wind speed and wind power density in multiple reanalysis datasets," Energy, Elsevier, vol. 200(C).
    10. Li, He & Liu, Pan & Guo, Shenglian & Cheng, Lei & Huang, Kangdi & Feng, Maoyuan & He, Shaokun & Ming, Bo, 2021. "Deriving adaptive long-term complementary operating rules for a large-scale hydro-photovoltaic hybrid power plant using ensemble Kalman filter," Applied Energy, Elsevier, vol. 301(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao, Haozeyu & Xu, Haiming & Huang, Gang & Yang, Kai, 2023. "Evaluation and future projections of wind energy resources over the Northern Hemisphere in CMIP5 and CMIP6 models," Renewable Energy, Elsevier, vol. 211(C), pages 809-821.
    2. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    3. Gibson, Peter B. & Cullen, Nicolas J., 2015. "Synoptic and sub-synoptic circulation effects on wind resource variability – A case study from a coastal terrain setting in New Zealand," Renewable Energy, Elsevier, vol. 78(C), pages 253-263.
    4. Lidong Zhang & Qikai Li & Yuanjun Guo & Zhile Yang & Lei Zhang, 2018. "An Investigation of Wind Direction and Speed in a Featured Wind Farm Using Joint Probability Distribution Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, November.
    5. Perini de Souza, Noéle Bissoli & Cardoso dos Santos, José Vicente & Sperandio Nascimento, Erick Giovani & Bandeira Santos, Alex Alisson & Moreira, Davidson Martins, 2022. "Long-range correlations of the wind speed in a northeast region of Brazil," Energy, Elsevier, vol. 243(C).
    6. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    7. Minaeian, Ali & Sedaghat, Ahmad & Mostafaeipour, Ali & Akbar Alemrajabi, Ali, 2017. "Exploring economy of small communities and households by investing on harnessing wind energy in the province of Sistan-Baluchestan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 835-847.
    8. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    9. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    10. Razmi, Amir Reza & Soltani, M. & Ardehali, Armin & Gharali, Kobra & Dusseault, M.B. & Nathwani, Jatin, 2021. "Design, thermodynamic, and wind assessments of a compressed air energy storage (CAES) integrated with two adjacent wind farms: A case study at Abhar and Kahak sites, Iran," Energy, Elsevier, vol. 221(C).
    11. Ali Mostafaeipour & Mostafa Rezaei & Mehdi Jahangiri & Mojtaba Qolipour, 2020. "Feasibility analysis of a new tree-shaped wind turbine for urban application: A case study," Energy & Environment, , vol. 31(7), pages 1230-1256, November.
    12. Akpan, Anthony E. & Ben, Ubong C. & Ekwok, Stephen E. & Okolie, Chukwuma J. & Epuh, Emeka E. & Julzarika, Atriyon & Othman, Abdullah & Eldosouky, Ahmed M., 2024. "Technical and performance assessments of wind turbines in low wind speed areas using numerical, metaheuristic and remote sensing procedures," Applied Energy, Elsevier, vol. 357(C).
    13. Bastien Alonzo & Silvia Concettini & Anna Creti & Philippe Drobinski & Peter Tankov, 2022. "Profitability and Revenue Uncertainty of Wind Farms in Western Europe in Present and Future Climate," Energies, MDPI, vol. 15(17), pages 1-29, September.
    14. Akpınar, Adem, 2013. "Evaluation of wind energy potentiality at coastal locations along the north eastern coasts of Turkey," Energy, Elsevier, vol. 50(C), pages 395-405.
    15. Tosunoğlu, Fatih, 2018. "Accurate estimation of T year extreme wind speeds by considering different model selection criterions and different parameter estimation methods," Energy, Elsevier, vol. 162(C), pages 813-824.
    16. J Charles Rajesh Kumar & D Vinod Kumar & D Baskar & B Mary Arunsi & R Jenova & MA Majid, 2021. "Offshore wind energy status, challenges, opportunities, environmental impacts, occupational health, and safety management in India," Energy & Environment, , vol. 32(4), pages 565-603, June.
    17. Bastien-Olvera, Bernardo A., 2019. "Business-as-usual redefined: Energy systems under climate-damaged economies warrant review of nationally determined contributions," Energy, Elsevier, vol. 170(C), pages 862-868.
    18. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    19. Varadharajan Sankaralingam Sriraja Balaguru & Nesamony Jothi Swaroopan & Kannadasan Raju & Mohammed H. Alsharif & Mun-Kyeom Kim, 2021. "Techno-Economic Investigation of Wind Energy Potential in Selected Sites with Uncertainty Factors," Sustainability, MDPI, vol. 13(4), pages 1-31, February.
    20. Bagci, Kubra & Arslan, Talha & Celik, H. Eray, 2021. "Inverted Kumarswamy distribution for modeling the wind speed data: Lake Van, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:167:y:2019:i:c:p:1224-1235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.