IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v166y2019icp587-597.html
   My bibliography  Save this article

Effect of phase formation on hydrogen storage properties in Ti-V-Mn alloys by zirconium substitution

Author

Listed:
  • Chen, X.Y.
  • Chen, R.R.
  • Ding, X.
  • Fang, H.Z.
  • Li, X.Z.
  • Ding, H.S.
  • Su, Y.Q.
  • Guo, J.J.
  • Fu, H.Z.

Abstract

In order to improve hydrogen storage properties of Ti23V40Mn37 alloy with the two-phase mixture of BCC and C14 Laves, the alloys with different Zr (x = 0, 2, 4, 6, 8 and 10, at.%) partly substituting for Ti have been produced. The results show that the primary (dendrite) BCC phase decreases and C14 Laves phase increases with increasing Zr. The secondary (blocky) BCC phase appears when Zr content is more than 6 at.%. The hydrogen absorption rate increases after completely activated because the Zr improves the formation of C14 Laves phase. Meanwhile, the reversible hydrogen capacity of Zr-substituted alloys is higher than that of Zr-free alloy. The effective hydrogen storage capacity reaches the maximum when the composition is Ti21Zr2V40Mn37, with a value of 1.85 wt.% at 293 K. Two desorption plateaus appear when Zr content is more than 6 at.%, and the width of the higher plateau increases with increasing of Zr. The higher plateau results from the fast diffusion of H atom in the smaller secondary BCC phase. With increasing the Zr content, the hysteresis and plateau slope factor increase, which can be attributed to the increasing strain energy of interstitial sites and the affinity of interstitial sites with H.

Suggested Citation

  • Chen, X.Y. & Chen, R.R. & Ding, X. & Fang, H.Z. & Li, X.Z. & Ding, H.S. & Su, Y.Q. & Guo, J.J. & Fu, H.Z., 2019. "Effect of phase formation on hydrogen storage properties in Ti-V-Mn alloys by zirconium substitution," Energy, Elsevier, vol. 166(C), pages 587-597.
  • Handle: RePEc:eee:energy:v:166:y:2019:i:c:p:587-597
    DOI: 10.1016/j.energy.2018.10.121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421832111X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.10.121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Sanjay & Jain, Ankur & Ichikawa, T. & Kojima, Y. & Dey, G.K., 2017. "Development of vanadium based hydrogen storage material: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 791-800.
    2. Destek, Mehmet Akif, 2016. "Natural gas consumption and economic growth: Panel evidence from OECD countries," Energy, Elsevier, vol. 114(C), pages 1007-1015.
    3. Kumar, Sanjay & Tiwari, G.P. & Sonak, Sagar & Jain, Uttam & Krishnamurthy, Nagaiyar, 2014. "High performance FeTi – 3.1 mass % V alloy for on board hydrogen storage solution," Energy, Elsevier, vol. 75(C), pages 520-524.
    4. Lv, Peng & Huot, Jacques, 2017. "Hydrogenation improvement of TiFe by adding ZrMn2," Energy, Elsevier, vol. 138(C), pages 375-382.
    5. Choi, Chul Hun & Eun, Joonyup & Cao, Jinjian & Lee, Seokcheon & Zhao, Fu, 2018. "Global strategic level supply planning of materials critical to clean energy technologies – A case study on indium," Energy, Elsevier, vol. 147(C), pages 950-964.
    6. Wang, Feng & Li, Rongfeng & Ding, Cuiping & Tang, Wukui & Wang, Yibo & Xu, Shimeng & Yu, Ronghai & Wang, Zhongmin, 2017. "Enhanced hydrogen storage properties of ZrCo alloy decorated with flower-like Pd particles," Energy, Elsevier, vol. 139(C), pages 8-17.
    7. Zhang, Yunlong & Li, Jinshan & Zhang, Tiebang & Kou, Hongchao & Hu, Rui & Xue, Xiangyi, 2016. "Hydrogen storage properties of non-stoichiometric Zr0.9TixV2 melt-spun ribbons," Energy, Elsevier, vol. 114(C), pages 1147-1154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, XiuBo & Hou, Chuanxin & Chen, Chunguang & Sun, Xueqin & Pang, Yu & Zhang, Yuping & Yu, Ronghai & Wang, Bing & Du, Wei, 2020. "First-principles studies in Mg-based hydrogen storage Materials: A review," Energy, Elsevier, vol. 211(C).
    2. Liu, Jingjing & Cheng, Honghui & Han, Shumin & Liu, Hongfei & Huot, Jacques, 2020. "Hydrogen storage properties and cycling degradation of single-phase La0.60R0.15Mg0·25Ni3.45 alloys with A2B7-type superlattice structure," Energy, Elsevier, vol. 192(C).
    3. Wang, Yanhong & Yin, Kaidong & Fan, Shuanshi & Lang, Xuemei & Yu, Chi & Wang, Shenglong & Li, Song, 2021. "The molecular insight into the “Zeolite-ice” as hydrogen storage material," Energy, Elsevier, vol. 217(C).
    4. Zhang, J. & Yao, Y. & He, L. & Zhou, X.J. & Yu, L.P. & Lu, X.Z. & Peng, P., 2021. "Hydrogen storage properties and mechanisms of as-cast, homogenized and ECAP processed Mg98.5Y1Zn0.5 alloys containing LPSO phase," Energy, Elsevier, vol. 217(C).
    5. Tian, Ying & Han, Jin & Bu, Yu & Qin, Chuan, 2023. "Simulation and analysis of fire and pressure reducing valve damage in on-board liquid hydrogen system of heavy-duty fuel cell trucks," Energy, Elsevier, vol. 276(C).
    6. Joanna Czub & Akito Takasaki & Andreas Hoser & Manfred Reehuis & Łukasz Gondek, 2023. "Synthesis and Hydrogenation of the Ti 45−x V x Zr 38 Ni 17 (5 ≤ x ≤ 40) Mechanically Alloyed Materials," Energies, MDPI, vol. 16(16), pages 1-11, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jingjing & Cheng, Honghui & Han, Shumin & Liu, Hongfei & Huot, Jacques, 2020. "Hydrogen storage properties and cycling degradation of single-phase La0.60R0.15Mg0·25Ni3.45 alloys with A2B7-type superlattice structure," Energy, Elsevier, vol. 192(C).
    2. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    3. Hadi Sasana & Imam Ghozali, 2017. "The Impact of Fossil and Renewable Energy Consumption on the Economic Growth in Brazil, Russia, India, China and South Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 194-200.
    4. Obsatar Sinaga & Mohd Haizam Mohd Saudi & Djoko Roespinoedji & Mohd Shahril Ahmad Razimi, 2019. "The Dynamic Relationship between Natural Gas and Economic Growth: Evidence from Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 388-394.
    5. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A D2C algorithm on the natural gas consumption and economic growth: Challenges faced by Germany and Japan," Energy, Elsevier, vol. 219(C).
    6. Liang Xie & Xianzhong Mu & Kuanyuting Lu & Dongou Hu & Guangwen Hu, 2023. "The time-varying relationship between CO2 emissions, heterogeneous energy consumption, and economic growth in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7769-7793, August.
    7. Sheilla Nyasha & Yvonne Gwenhure & Nicholas M Odhiambo, 2018. "Energy consumption and economic growth in Ethiopia: A dynamic causal linkage," Energy & Environment, , vol. 29(8), pages 1393-1412, December.
    8. Seong-Jae Seo & Ju-Hee Kim & Seung-Hoon Yoo, 2020. "Public Preference for Increasing Natural Gas Generation for Reducing CO 2 Emissions in South Korea," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    9. Li, Wei & Lu, Can, 2019. "The multiple effectiveness of state natural gas consumption constraint policies for achieving sustainable development targets in China," Applied Energy, Elsevier, vol. 235(C), pages 685-698.
    10. Pradhan, Rudra P. & Arvin, Mak B. & Nair, Mahendhiran & Bennett, Sara E. & Hall, John H., 2018. "The dynamics between energy consumption patterns, financial sector development and economic growth in Financial Action Task Force (FATF) countries," Energy, Elsevier, vol. 159(C), pages 42-53.
    11. Victoria Oluwatoyin Foye & Oluwasegun Olawale Benjamin, 2021. "Natural gas consumption and economic performance in selected sub‐Saharan African countries: A heterogeneous panel ARDL analysis," African Development Review, African Development Bank, vol. 33(3), pages 518-532, September.
    12. Jiang, Hongdian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2020. "What drives China's natural gas consumption? Analysis of national and regional estimates," Energy Economics, Elsevier, vol. 87(C).
    13. Fan, Baowei & Pan, Jianfeng & Yang, Wenming & Pan, Zhenhua & Bani, Stephen & Chen, Wei & He, Ren, 2017. "Combined effect of injection timing and injection angle on mixture formation and combustion process in a direct injection (DI) natural gas rotary engine," Energy, Elsevier, vol. 128(C), pages 519-530.
    14. Akadiri, Ada Chigozie & Akadiri, Seyi Saint & Gungor, Hasan, 2019. "The role of natural gas consumption in Saudi Arabia's output and its implication for trade and environmental quality," Energy Policy, Elsevier, vol. 129(C), pages 230-238.
    15. Junsheng Ha & Pei-Pei Tan & Kim-Leng Goh, 2018. "Linear and nonlinear causal relationship between energy consumption and economic growth in China: New evidence based on wavelet analysis," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-21, May.
    16. Soytas, Ugur & Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2022. "Economic and environmental implications of the nuclear power phase-out in Belgium: Insights from time-series models and a partial differential equations algorithm," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 241-256.
    17. Uchman, Wojciech & Skorek-Osikowska, Anna & Jurczyk, Michał & Węcel, Daniel, 2020. "The analysis of dynamic operation of power-to-SNG system with hydrogen generator powered with renewable energy, hydrogen storage and methanation unit," Energy, Elsevier, vol. 213(C).
    18. Matheus Belucio & Renato Santiago & José Alberto Fuinhas & Luiz Braun & José Antunes, 2022. "The Impact of Natural Gas, Oil, and Renewables Consumption on Carbon Dioxide Emissions: European Evidence," Energies, MDPI, vol. 15(14), pages 1-16, July.
    19. Wang, Feng & Li, Rongfeng & Ding, Cuiping & Tang, Wukui & Wang, Yibo & Xu, Shimeng & Yu, Ronghai & Wang, Zhongmin, 2017. "Enhanced hydrogen storage properties of ZrCo alloy decorated with flower-like Pd particles," Energy, Elsevier, vol. 139(C), pages 8-17.
    20. Magnus M. Nygård & Magnus H. Sørby & Arne A. Grimenes & Bjørn C. Hauback, 2020. "The Influence of Fe on the Structure and Hydrogen Sorption Properties of Ti-V-Based Metal Hydrides," Energies, MDPI, vol. 13(11), pages 1-11, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:166:y:2019:i:c:p:587-597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.