IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v159y2018icp961-976.html
   My bibliography  Save this article

Darrieus wind turbine prototype: Dynamic modeling parameter identification and control analysis

Author

Listed:
  • Pereira, T.R.
  • Batista, N.C.
  • Fonseca, A.R.A.
  • Cardeira, C.
  • Oliveira, P.
  • Melicio, R.

Abstract

This paper details the process required to develop a linear dynamic model and control of a Darrieus wind turbine equipped with a Permanent Magnet Synchronous Generator. The turbine is to be integrated in a smart grid for future installation in urban context. An active control system is integrated in such a way that, even in the presence of non-ideal phenomena and disturbances, optimal operation is achieved. For the class of linear (or linearized) systems such optimal control solution corresponds to the Linear Quadratic Regulator (LQR). A set of tests were performed on a wind tunnel, data was acquired allowing the application of well rooted identification techniques, leading to the deduction and validation of several low order dynamic models. Optimal control solutions were implemented to guarantee that close to ideal operational conditions are maintained. As such, efficiency is improved without jeopardizing the integrity of the wind turbine in a broad set of operational conditions.

Suggested Citation

  • Pereira, T.R. & Batista, N.C. & Fonseca, A.R.A. & Cardeira, C. & Oliveira, P. & Melicio, R., 2018. "Darrieus wind turbine prototype: Dynamic modeling parameter identification and control analysis," Energy, Elsevier, vol. 159(C), pages 961-976.
  • Handle: RePEc:eee:energy:v:159:y:2018:i:c:p:961-976
    DOI: 10.1016/j.energy.2018.06.162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218312271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gomes, I.L.R. & Pousinho, H.M.I. & Melício, R. & Mendes, V.M.F., 2017. "Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market," Energy, Elsevier, vol. 124(C), pages 310-320.
    2. Pagnini, Luisa C. & Burlando, Massimiliano & Repetto, Maria Pia, 2015. "Experimental power curve of small-size wind turbines in turbulent urban environment," Applied Energy, Elsevier, vol. 154(C), pages 112-121.
    3. Melício, R. & Mendes, V.M.F. & Catalão, J.P.S., 2011. "Comparative study of power converter topologies and control strategies for the harmonic performance of variable-speed wind turbine generator systems," Energy, Elsevier, vol. 36(1), pages 520-529.
    4. Kandpal, Tara C. & Broman, Lars, 2014. "Renewable energy education: A global status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 300-324.
    5. Boukhezzar, B. & Lupu, L. & Siguerdidjane, H. & Hand, M., 2007. "Multivariable control strategy for variable speed, variable pitch wind turbines," Renewable Energy, Elsevier, vol. 32(8), pages 1273-1287.
    6. Abdalrahman, Gebreel & Melek, William & Lien, Fue-Sang, 2017. "Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT)," Renewable Energy, Elsevier, vol. 114(PB), pages 1353-1362.
    7. Rezaeiha, Abdolrahim & Kalkman, Ivo & Blocken, Bert, 2017. "Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine," Applied Energy, Elsevier, vol. 197(C), pages 132-150.
    8. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ravasco, Francisco & Melicio, Rui & Batista, Nelson & Valério, Duarte, 2020. "A wind turbine and its robust control using the CRONE method," Renewable Energy, Elsevier, vol. 160(C), pages 483-497.
    2. Geraldo Rodrigues & Duarte Valério & Rui Melicio, 2022. "Controller Development and Experimental Validation for a Vertical Axis Wind Turbine," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    3. Aktaş, Ahmet & Kırçiçek, Yağmur, 2020. "A novel optimal energy management strategy for offshore wind/marine current/battery/ultracapacitor hybrid renewable energy system," Energy, Elsevier, vol. 199(C).
    4. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    5. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pagnini, Luisa & Piccardo, Giuseppe & Repetto, Maria Pia, 2018. "Full scale behavior of a small size vertical axis wind turbine," Renewable Energy, Elsevier, vol. 127(C), pages 41-55.
    2. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Zhang, Qiang & Bashir, Musa & Miao, Weipao & Liu, Qingsong & Li, Chun & Yue, Minnan & Wang, Peilin, 2023. "Aerodynamic analysis of a novel pitch control strategy and parameter combination for vertical axis wind turbines," Renewable Energy, Elsevier, vol. 216(C).
    4. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    5. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    7. Singh, Enderaaj & Roy, Sukanta & Yam, Ke San & Law, Ming Chiat, 2023. "Numerical analysis of H-Darrieus vertical axis wind turbines with varying aspect ratios for exhaust energy extractions," Energy, Elsevier, vol. 277(C).
    8. Ravi Pandit & David Infield, 2018. "Gaussian Process Operational Curves for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 11(7), pages 1-20, June.
    9. Lee, Kung-Yen & Tsao, Shao-Hua & Tzeng, Chieh-Wen & Lin, Huei-Jeng, 2018. "Influence of the vertical wind and wind direction on the power output of a small vertical-axis wind turbine installed on the rooftop of a building," Applied Energy, Elsevier, vol. 209(C), pages 383-391.
    10. Siddiqui, M. Salman & Khalid, Muhammad Hamza & Zahoor, Rizwan & Butt, Fahad Sarfraz & Saeed, Muhammed & Badar, Abdul Waheed, 2021. "A numerical investigation to analyze effect of turbulence and ground clearance on the performance of a roof top vertical–axis wind turbine," Renewable Energy, Elsevier, vol. 164(C), pages 978-989.
    11. Baghdadi, M. & Elkoush, S. & Akle, B. & Elkhoury, M., 2020. "Dynamic shape optimization of a vertical-axis wind turbine via blade morphing technique," Renewable Energy, Elsevier, vol. 154(C), pages 239-251.
    12. Leonczuk Minetto, Robert Alexis & Paraschivoiu, Marius, 2020. "Simulation based analysis of morphing blades applied to a vertical axis wind turbine," Energy, Elsevier, vol. 202(C).
    13. Jia Guo & Liping Lei, 2020. "Flow Characteristics of a Straight-Bladed Vertical Axis Wind Turbine with Inclined Pitch Axes," Energies, MDPI, vol. 13(23), pages 1-23, November.
    14. Sagharichi, A. & Zamani, M. & Ghasemi, A., 2018. "Effect of solidity on the performance of variable-pitch vertical axis wind turbine," Energy, Elsevier, vol. 161(C), pages 753-775.
    15. Chong, Wen-Tong & Muzammil, Wan Khairul & Wong, Kok-Hoe & Wang, Chin-Tsan & Gwani, Mohammed & Chu, Yung-Jeh & Poh, Sin-Chew, 2017. "Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design," Applied Energy, Elsevier, vol. 207(C), pages 78-95.
    16. Bundi, Josephat Machoka & Ban, Xiaojun & Wekesa, David Wafula & Ding, Shuchen, 2020. "Pitch control of small H-type Darrieus vertical axis wind turbines using advanced gain scheduling techniques," Renewable Energy, Elsevier, vol. 161(C), pages 756-765.
    17. Kumar, Rakesh & Sarkar, Shibayan, 2022. "Effect of design parameters on the performance of helical Darrieus hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Zhang, Lijun & Gu, Jiawei & Zhu, Huaibao & Hu, Kuoliang & Li, Xiang & Jiao, Liuyang & Miao, Junjie & Liu, Jing & Wang, Zhiwei, 2021. "Rationality research of the adjustment law for the blade pitch angle of H-type vertical-axis wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 484-496.
    19. Guo, Jia & Zeng, Pan & Lei, Liping, 2019. "Performance of a straight-bladed vertical axis wind turbine with inclined pitch axes by wind tunnel experiments," Energy, Elsevier, vol. 174(C), pages 553-561.
    20. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:159:y:2018:i:c:p:961-976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.