IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v158y2018icp807-819.html
   My bibliography  Save this article

Optimization of automotive diesel engine calibration using genetic algorithm techniques

Author

Listed:
  • Millo, Federico
  • Arya, Pranav
  • Mallamo, Fabio

Abstract

Although the advancements in automotive diesel engines in the last two decades have resulted in the possibility of achieving better performance with lower pollutant emissions and fuel consumption, the increased complexity of the system and the high number of control parameters require the solution of optimization problems of high dimensionality. It is of crucial importance to identify suitable methodologies, which allow achieving the full exploitation of the potential of these powertrains. In this paper, an original methodology for optimizing the latest generation of common rail automotive diesel engines has been presented.

Suggested Citation

  • Millo, Federico & Arya, Pranav & Mallamo, Fabio, 2018. "Optimization of automotive diesel engine calibration using genetic algorithm techniques," Energy, Elsevier, vol. 158(C), pages 807-819.
  • Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:807-819
    DOI: 10.1016/j.energy.2018.06.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218311095
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Knecht, Walter, 2008. "Diesel engine development in view of reduced emission standards," Energy, Elsevier, vol. 33(2), pages 264-271.
    2. Beatrice, Carlo & Napolitano, Pierpaolo & Guido, Chiara, 2014. "Injection parameter optimization by DoE of a light-duty diesel engine fed by Bio-ethanol/RME/diesel blend," Applied Energy, Elsevier, vol. 113(C), pages 373-384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Ziółkowski & Marta Drosińska-Komor & Jerzy Głuch & Łukasz Breńkacz, 2023. "Review of Methods for Diagnosing the Degradation Process in Power Units Cooperating with Renewable Energy Sources Using Artificial Intelligence," Energies, MDPI, vol. 16(17), pages 1-28, August.
    2. Duro, João A. & Ozturk, Umud Esat & Oara, Daniel C. & Salomon, Shaul & Lygoe, Robert J. & Burke, Richard & Purshouse, Robin C., 2023. "Methods for constrained optimization of expensive mixed-integer multi-objective problems, with application to an internal combustion engine design problem," European Journal of Operational Research, Elsevier, vol. 307(1), pages 421-446.
    3. Yu, Xunzhao & Zhu, Ling & Wang, Yan & Filev, Dimitar & Yao, Xin, 2022. "Internal combustion engine calibration using optimization algorithms," Applied Energy, Elsevier, vol. 305(C).
    4. Yindong Song & Yiyu Xu & Xiuwei Cheng & Ziyu Wang & Weiqing Zhu & Xinyu Fan, 2022. "Using a Genetic Algorithm to Achieve Optimal Matching between PMEP and Diameter of Intake and Exhaust Throat of a High-Boost-Ratio Engine," Energies, MDPI, vol. 15(5), pages 1-17, February.
    5. Pan, Jeng-Shyang & Hu, Pei & Chu, Shu-Chuan, 2021. "Binary fish migration optimization for solving unit commitment," Energy, Elsevier, vol. 226(C).
    6. Ferrari, A. & Novara, C. & Paolucci, E. & Vento, O. & Violante, M. & Zhang, T., 2018. "Design and rapid prototyping of a closed-loop control strategy of the injected mass for the reduction of CO2, combustion noise and pollutant emissions in diesel engines," Applied Energy, Elsevier, vol. 232(C), pages 358-367.
    7. Arya, Pranav & Millo, Federico & Mallamo, Fabio, 2019. "A fully automated smooth calibration generation methodology for optimization of latest generation of automotive diesel engines," Energy, Elsevier, vol. 178(C), pages 334-343.
    8. Tadros, M. & Ventura, M. & Guedes Soares, C., 2019. "Optimization procedure to minimize fuel consumption of a four-stroke marine turbocharged diesel engine," Energy, Elsevier, vol. 168(C), pages 897-908.
    9. Gharehghani, Ayat & Abbasi, Hamid Reza & Alizadeh, Pouria, 2021. "Application of machine learning tools for constrained multi-objective optimization of an HCCI engine," Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2013. "Experimental study of hexagonal and square diesel particulate filters under controlled and uncontrolled catalyzed regeneration," Energy, Elsevier, vol. 60(C), pages 325-332.
    2. Bermúdez, Vicente & Luján, José Manuel & Piqueras, Pedro & Campos, Daniel, 2014. "Pollutants emission and particle behavior in a pre-turbo aftertreatment light-duty diesel engine," Energy, Elsevier, vol. 66(C), pages 509-522.
    3. Wong, Ka In & Wong, Pak Kin & Cheung, Chun Shun & Vong, Chi Man, 2013. "Modeling and optimization of biodiesel engine performance using advanced machine learning methods," Energy, Elsevier, vol. 55(C), pages 519-528.
    4. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2012. "Effect of a homogeneous combustion catalyst on the combustion characteristics and fuel efficiency in a diesel engine," Applied Energy, Elsevier, vol. 91(1), pages 166-172.
    5. Serrano, J. & Jiménez-Espadafor, F.J. & Lora, A. & Modesto-López, L. & Gañán-Calvo, A. & López-Serrano, J., 2019. "Experimental analysis of NOx reduction through water addition and comparison with exhaust gas recycling," Energy, Elsevier, vol. 168(C), pages 737-752.
    6. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
    7. Aldhaidhawi, Mohanad & Chiriac, Radu & Badescu, Viorel, 2017. "Ignition delay, combustion and emission characteristics of Diesel engine fueled with rapeseed biodiesel – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 178-186.
    8. Yunus khan, T.M. & Badruddin, Irfan Anjum & Badarudin, Ahmad & Banapurmath, N.R. & Salman Ahmed, N.J. & Quadir, G.A. & Al-Rashed, Abdullah A.A.A. & Khaleed, H.M.T. & Kamangar, Sarfaraz, 2015. "Effects of engine variables and heat transfer on the performance of biodiesel fueled IC engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 682-691.
    9. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    10. Benajes, J. & Novella, R. & Pastor, J.M. & Hernández-López, A. & Duverger, T., 2017. "A computational analysis of the impact of bore-to-stroke ratio on emissions and efficiency of a HSDI engine," Applied Energy, Elsevier, vol. 205(C), pages 903-910.
    11. Luján, José Manuel & Bermúdez, Vicente & Piqueras, Pedro & García-Afonso, Óscar, 2015. "Experimental assessment of pre-turbo aftertreatment configurations in a single stage turbocharged diesel engine. Part 1: Steady-state operation," Energy, Elsevier, vol. 80(C), pages 599-613.
    12. Usón, Alfonso Aranda & Capilla, Antonio Valero & Bribián, Ignacio Zabalza & Scarpellini, Sabina & Sastresa, Eva Llera, 2011. "Energy efficiency in transport and mobility from an eco-efficiency viewpoint," Energy, Elsevier, vol. 36(4), pages 1916-1923.
    13. Mohamed Shameer, P. & Ramesh, K. & Sakthivel, R. & Purnachandran, R., 2017. "Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1267-1281.
    14. Arnal, C. & Alzueta, M.U. & Millera, A. & Bilbao, R., 2012. "Influence of water vapor addition on soot oxidation at high temperature," Energy, Elsevier, vol. 43(1), pages 55-63.
    15. Khayyam, Hamid & Naebe, Minoo & Bab-Hadiashar, Alireza & Jamshidi, Farshid & Li, Quanxiang & Atkiss, Stephen & Buckmaster, Derek & Fox, Bronwyn, 2015. "Stochastic optimization models for energy management in carbonization process of carbon fiber production," Applied Energy, Elsevier, vol. 158(C), pages 643-655.
    16. Nawar Al-Esawi & Mansour Al Qubeissi & Ruslana Kolodnytska, 2019. "The Impact of Biodiesel Fuel on Ethanol/Diesel Blends," Energies, MDPI, vol. 12(9), pages 1-11, May.
    17. Fayyazbakhsh, Ahmad & Pirouzfar, Vahid, 2017. "Comprehensive overview on diesel additives to reduce emissions, enhance fuel properties and improve engine performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 891-901.
    18. Li, Jing & Yang, Wen Ming & Goh, Thong Ngee & An, Hui & Maghbouli, Amin, 2014. "Study on RCCI (reactivity controlled compression ignition) engine by means of statistical experimental design," Energy, Elsevier, vol. 78(C), pages 777-787.
    19. Ma, Yu & Zhu, Mingming & Zhang, Dongke, 2014. "Effect of a homogeneous combustion catalyst on the characteristics of diesel soot emitted from a compression ignition engine," Applied Energy, Elsevier, vol. 113(C), pages 751-757.
    20. Berggren, Christian & Magnusson, Thomas, 2012. "Reducing automotive emissions—The potentials of combustion engine technologies and the power of policy," Energy Policy, Elsevier, vol. 41(C), pages 636-643.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:158:y:2018:i:c:p:807-819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.